CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 505

_id db13
authors Jacobsen, K., Eastman, C. and Tay, S.J.
year 1997
title Information management in creative engineering design and capabilities of database transactions
source Automation in Construction 7 (1) (1997) pp. 55-69
summary This paper examines the information management requirements and sets forth the general criteria for collaboration and concurrency control in creative engineering design. Our work attempts to recognize the full range of concurrency, collaboration and complex transactions structure now practiced in manual and semi-automated design and the range of capabilities needed as the demands for enhanced but flexible electronic information management unfolds. The objective of this paper is to identify new issues that may advance the use of databases to support creative engineering design. We start with a generalized description of the structure of design tasks and how information management in design is dealt with today. After this review, we identify extensions to current information management capabilities that have been realized and/or proposed to support/augment what designers can do now. Given this capability-based starting point, we review existing database and information management capabilities, as presented in the literature. In the review, we identify the gaps between current concurrency and collaboration technology and what is needed or would be desirable. Our objective is to assess current research and to identify new issues that may advance the use of databases to support creative engineering design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id 80f7
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2001
title Knowledge-based System to Support Architectural Design - Intelligent objects, project net-constraints, collaborative work
doi https://doi.org/10.52842/conf.ecaade.2001.080
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 80-85
summary The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simultaneous activity of specialists in different fields, often working a considerable distance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that embraces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural artefact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organism for the purpose of managing conflicts and developing possible methods of resolving them.
keywords Keywords. Collaborative Design, Architectural And Building Knowledge, Distributed Knowledge Bases, Information Management, Multidisciplinarity
series eCAADe
email
last changed 2022/06/07 07:55

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 7e15
authors Kvan, Thomas
year 1997
title Chips, chunks and sauces
source International Journal of Design Computing, 1, 1997 (Editorial)
summary I am sure there is an art in balancing the chunks to use with your chips. Then there is the sauce that envelops them both. I like my chips chunky and not too saucy. Not that I am obsessed with food but I don't think you can consider design computing without chunks. It's the sauce I'm not sure about. The chunks of which I write are not of course those in your salsa picante but those postulated by Chase and Simon (1973) reflecting on good chess players; the chunks of knowledge with which an expert tackles a problem in their domain of expertise. The more knowledge an expert has of complex and large configurations of typical problem situations (configurations of chess pieces), the greater range of solutions the expert can bring a wider to a particular problem. Those with more chunks have more options and arrive at better solutions. In other words, good designs come from having plenty of big chunks available. There has been a wealth of research in the field of computer-supported collaborative work in the contexts of writing, office management, software design and policy bodies. It is typically divided between systems which support decision making (GDSS: group decision support systems) and those which facilitate joint work (CSCW: computer-based systems for co-operative work) (see Dennis et al. (1988) for a discussion of the distinctions and their likely convergence). Most implementations in the world of design have been on CSCW systems, few have looked at trying to make a group design decision support system (GDDSS?). Most of the work in CSCD has been grounded in the heritage of situated cognition - the assumption that collaborative design is an act that is intrinsically grounded in the context within which it is carried out, that is, the sauce in which we find ourselves swimming daily. By sauce, therefore, I am referring to anything that is not knowledge in the domain of expertise, such as modes of interaction, gestures, social behaviours.
series journal paper
email
last changed 2003/05/15 10:29

_id 2de7
authors Lachmi, K., Beatrice, B., Timerman, A. and Kalay, Y.E.
year 1997
title Semantically Rich Building Representation
doi https://doi.org/10.52842/conf.acadia.1997.207
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 207-227
summary At the core of any computational system that can support design development, analysis, and evaluation is a building representation which should be able to represent all the different components that make up a building, along with the manner in which they come together. In other words, the representation must be informationally complete and semantically rich. The paper discusses these two criteria in detail, and briefly reviews other research efforts aimed at developing building representations for CAAD that attempt to meet them. Our solution to this problem is then presented. It is aimed primarily at the schematic design phase, the rationale for which is also stated. Taking the view that buildings are unique assemblies of discrete, mostly standardized components, our representation is clearly divided into two components: the Object Database (ODB) which stores detailed information about various building elements, and the Project Database (PDB) which holds information about how these elements are assembled to make up a particular building. An ODB may be shared by many building projects, while the PDB must necessarily be unique to each. The data schemas of both the PDB and the ODB are described in detail and their computational implementation, to the extent that it has been completed, is illustrated.

series ACADIA
email
last changed 2022/06/07 07:52

_id b357
authors Molinari, Claudio and Talamo, Cinzia
year 1997
title A Hypertextual Didactic Tool for a Maintenance Oriented Design
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 263-275
summary This paper presents a research concerning the theme of the support didactic tools for a maintenance oriented design. The work takes a starting point in two remarks: the first is the importance of maintainability requirements prevision for the correct planning of a project and for the formulation of maintenance strategies; the second is the lack of information (examples, references, laws, quality and performance plans) easily available for students and designers. The tool thas has been pointed out has the aim to provide the information - belonging to different categories of knowledge - useful for a maintainability conscious design, according the free navigation modalities tipical of hypertextual applications. Starting from a matrix that associates building subsistems and maintainability requirements the student has the possibility to navigate into a network in which it is possible to have information about: european laws concerning maintenance, examples (drawings, pictures and description) of architectures and of industrial components that regard particular maintainability solutions and a plan in which are schematized the appropriate dimensions and the morfological configurations for the maintenance activities. This hypertextual didactic tool has two different educational applications: 1) during design training courses, it can support in self-training about maintenance aspects; 2) it can become a specialistic module inside an integrated CAAD system developed to combine the graphic representation with different performances evalutions.
series AVOCAAD
last changed 2005/09/09 10:48

_id 060b
authors Af Klercker, J.
year 1997
title A National Strategy for CAAD and IT-Implementation in the Construction Industry the Construction Industry
doi https://doi.org/10.52842/conf.ecaade.1997.x.o8u
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary The objective of this paper is to present a strategy for implementation of CAD and IT in the construction and building management#1 industry in Sweden. The interest is in how to make the best use of the limited resources in a small country or region, cooperating internationally and at the same time avoiding to be totally dominated by the great international actors in the market of information technology.

In Sweden representatives from the construction and building management industry have put forward a research and development program called: "IT-Bygg#2 2002 - Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry.

The presented strategy is based on a seminar with some of the most experienced researchers, developers and practitioners of CAD in Sweden. The activities were recorded and annotated, analyzed and put together afterwards.

The proposal in brief is that object oriented distributed CAD is to be used in the long perspective. It will need to be based on international standards such as STEP and it will take at least another 5 years to get established.

Meanwhile something temporary has to be used. Pragmatically a "de facto standard" on formats has to be accepted and implemented. To support new users of IT all software in use in the country will be analyzed, described and published for a national platform for IT-communication within the construction industry.

Finally the question is discussed "How can architect schools then contribute to IT being implemented within the housing sector at a regional or national level?" Some ideas are presented: Creating the good example, better support for the customer, sharing the holistic concept of the project with all actors, taking part in an integrated education process and international collaboration like AVOCAAD and ECAADE.

 

keywords CAAD, IT, Implementation, Education, Collaboration
series eCAADe
type normal paper
email
more http://info.tuwien.ac.at/ecaade/proc/afklerck/afklerck.htm
last changed 2022/06/07 07:50

_id acadia23_v1_136
id acadia23_v1_136
authors Alima, Natalia
year 2023
title InterspeciesForms
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 136-143.
summary The hybridization of architectural, biological and robotic agencies Situated in the field of architectural biodesign, InterspeciesForms explores a closer relationship between the fungus Pleurotus ostreatus and the designer in the creation of form. The intention of hybridizing mycelia’s agency of growth with architectural design intention is to generate novel, non-indexical crossbred designed outcomes that evolve preconceived notions of architectural form. Mycelium are threadlike fibrous root systems made up of hyphae, that form the vegetative part of a fungus (Jones 2020). Known as the hackers of the wood wide web (Simard 1997) mycelia form complex symbiotic relationships with other species that inhabit our earth. Michael Lim states “Fungi redefine resourcefulness, collaboration, resilience and symbiosis” (Lim 2022, p. 14). When wandering around the forest to connect with other species or searching for food, fungi form elaborate and entangled networks by spreading their hyphal tips. Shown in Figure 1, this living labyrinth results in the aesthetic formation of an intricate web. Due to the organisms ability to determine the most effective direction of growth, communicate with its surrounding ecosystem, and connect with other species, fungi are indeed an intelligent species with a unique aesthetic that must not be ignored. In drawing on these concepts, I refer to the organism’s ability to search for, tangle, and digest its surroundings as ‘mycelia agency of growth’. It is this specific behavioral characteristic that is the focus of this research, with which I, as the architect, set out to co-create and hybridize with.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id 673a
authors Fukuda, T., Nagahama, R. and Sasada, T.
year 1997
title Networked Interactive 3-D design System for Collaboration
doi https://doi.org/10.52842/conf.caadria.1997.429
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 429-437
summary The concept of ODE (Open Design Environment) and corresponding system were presented in 1991. Then the new concept of NODE. which is networked version of ODE. was generated to make wide area collaboration in 1994. The aim of our research is to facilitate the collaboration among the various people involved in the design process of an urban or architectural project. This includes various designers and engineers, the client and the citizens who may be affected by such a project. With the new technologies of hyper medium, network, and component architecture, we have developed NODE system and applied in practical use of the collaboration among the various people. This study emphasizes the interactive 3-D design tool of NODE which is able to make realistic and realtime presentation with interactive interface. In recent years, ProjectFolder of NODE system, which is a case including documents, plans, and tools to proceed project., is created in the World Wide Web (WWW) and makes hyper links between a 3-D object and a text, an image. and other digital data.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
doi https://doi.org/10.52842/conf.acadia.2007.040
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id 4b2a
id 4b2a
authors Jabi, Wassim
year 2004
title A FRAMEWORK FOR COMPUTER-SUPPORTED COLLABORATION IN ARCHITECTURAL DESIGN
source University of Michigan
summary The development of appropriate research frameworks and guidelines for the construction of software aids in the area of architectural design can lead to a better understanding of designing and computer support for designing (Gero and Maher 1997). The field of research and development in computer-supported collaborative architectural design reflects that of the early period in the development of the field of computersupported cooperative work (CSCW). In the early 1990s, the field of CSCW relied on unsystematic attempts to generate software that increases the productivity of people working together (Robinson 1992). Furthermore, a shift is taking place by which researchers in the field of architecture are increasingly becoming consumers of rather than innovators of technology (Gero and Maher . In particular, the field of architecture is rapidly becoming dependent on commercial software implementations that are slow to respond to new research or to user demands. Additionally, these commercial systems force a particular view of the domain they serve and as such might hinder rather than help its development. The aim of this dissertation is to provide information to architects and others to help them build their own tools or, at a minimum, be critical of commercial solutions.
series thesis:PhD
type normal paper
email
last changed 2004/10/24 22:35

_id 0bc0
authors Kellett, R., Brown, G.Z., Dietrich, K., Girling, C., Duncan, J., Larsen, K. and Hendrickson, E.
year 1997
title THE ELEMENTS OF DESIGN INFORMATION FOR PARTICIPATION IN NEIGHBORHOOD-SCALE PLANNING
doi https://doi.org/10.52842/conf.acadia.1997.295
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 295-304
summary Neighborhood scale planning and design in many communities has been evolving from a rule-based process of prescriptive codes and regulation toward a principle- and performance-based process of negotiated priorities and agreements. Much of this negotiation takes place in highly focused and interactive workshop or 'charrette' settings, the best of which are characterized by a fluid and lively exchange of ideas, images and agendas among a diverse mix of citizens, land owners, developers, consultants and public officials. Crucial to the quality and effectiveness of the exchange are techniques and tools that facilitate a greater degree of understanding, communication and collaboration among these participants.

Digital media have a significant and strategic role to play toward this end. Of particular value are representational strategies that help disentangle issues, clarify alternatives and evaluate consequences of very complex and often emotional issues of land use, planning and design. This paper reports on the ELEMENTS OF NEIGHBORHOOD, a prototype 'electronic notebook' (relational database) tool developed to bring design information and example 'to the table' of a public workshop. Elements are examples of the building blocks of neighborhood (open spaces, housing, commercial, industrial, civic and network land uses) derived from built examples, and illustrated with graphic, narrative and numeric representations relevant to planning, design, energy, environmental and economic performance. Quantitative data associated with the elements can be linked to Geographic Information based maps and spreadsheet based-evaluation models.

series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id 8e5c
authors Khemlani, Lachmi and Kalay, Yehuda E.
year 1997
title An Integrated Computing Environment for Collaborative, Multi-Disciplinary Building Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 389-416
summary The increasing complexity of the built environment requires that more knowledge and experience be brought to bear on its design, construction and maintenance. The commensurate growth of knowledge in the participating disciplines-architecture, engineering, construction management, facilities management, and others-has tended to diversify each one into many sub-specializations. The resulting fragmentation of the design-built-use process is potentially detrimental to the overall quality of built environment. An efficient system of collaboration between all the specialist participants is needed to offset the effects of fragmentation. It is here that computers, with their ubiquitous presence in all disciplines, can serve as a medium of communication and form the basis of a collaborative, multi- disciplinary design environment. This paper describes the ongoing research on the development of such an integrated computing environment that will provide the basis for design and evaluation tools ranging across the many building-related disciplines. The bulk of the discussion will focus on the problem of a building representation that can be shared by all these disciplines, which, we posit, lies at the core of such an environment. We discuss the criteria that characterize this shared building representation, and present our solution to the problem. The proposed model has been adapted from geometric modeling, and addresses explicitly the difficult Problem of generality versus completeness of the represented information. The other components of the integrated environment that are under development are also described. The paper concludes with some implementation details and a brief look at two evaluation tools that use the proposed building representation for their task.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id c59c
authors Kokosalakis, Jen
year 1997
title C AD VANTAGE for Communities, Professionals and Students
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 235-254
summary I propose to consider how added value for professionals, and the consumers of their buildings and students of these processes might be attained. Through the vehicle of new technologies including the humble 'CAD' system a fuller collaboration in design decision- making is aided through representation of 3 dimensional design ideas and their comprehension from different 'vantage' points. Thus computing may enhance opportunity for more informed dialogue involving verbal and visual responses between the intentions of the architect and client and promise to open up more of the architectural design process to participation by the building consumers, bringing advantage' to all actors in the design process. More liberated sketching at the system is becoming evident as programmers, and users' skills adapt to the search for more enabling, creative and easier tools, procedures and interfaces freeing responsiveness to consumer wishes. Reflection from clients and practitioners brings hope that a more informed dialogue is enabled through computer supported designing. The beginnings of CAAD support to community groups acts as a facilitator. Contacting and working with community groups follows effective 'Community Development' precedents established in the Liverpool of the sixties; to contact, activate, enable and provide necessary skill supports for community-driven striving for resolution of housing problems. Results of this, ploughed back into CAD teaching for Environmental Planners, brings increased awareness and visualisation of environmental, architectural and human issues and promises to begin a new cycle of more informed participation for citizens, architects, planners and consultants.
series AVOCAAD
last changed 2005/09/09 10:48

_id 789d
authors Kvan, Th., West, R. and Vera, A.
year 1997
title Tools for a Virtual Design Community
source Preprints Formal Aspects of Collaborative CAD, ed. M. L. Maher, J. S. Gero & F. Sudweeks, Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, pp. 109-123
summary This paper proposes a methodology to evaluate the effects of computer-mediated communication on collaboratively solving design problems. When setting up a virtual design community; choices must be made between a variety of tools; choices dictated by budget; bandwidth; ability and availability. How do you choose between the tools; which is useful and how will each affect the outcome of the design exchanges you plan? A commonly used method is to analyze the work done and to identify tools which support this type of work. In general; research on the effects of computer-mediation on collaborative work has concentrated mainly on social-psychological factors such as deindividuation and attitude polarization; and used qualitative methods. In contrast; we propose to examine the process of collaboration itself; focusing on separating those component processes which primarily involve individual work from those that involve genuine interaction. Extending the cognitive metaphor of the brain as a computer; we view collaboration in terms of a network process; and examine issues of control; coordination; and delegation to separate sub-processors. Through this methodology we attempt to separate the individual problem-solving component from the larger process of collaboration.
keywords CSCW; Group Work; Design; Expertise; Collaboration; Novice
series other
email
last changed 2002/11/15 18:29

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id 7f3b
authors McCall, R. and Johnson, E.
year 1997
title Using argumentative agents to catalyze and support collaboration in design
source Automation in Construction 6 (4) (1997) pp. 299-309
summary Since the 1970s, we have created hypertext systems supporting Rittel's argumentative approach to design. Our efforts aim at improving design by encouraging argumentative, i.e., reasoned-discourse during projects. Despite the intrinsically group-oriented character of the argumentative approach, all of our past prototypes were single-user systems. The project reported here is the first in which we aim at supporting argumentation in group projects. To do this, we augmented our PHIDIAS hyperCAD system to show how argumentative agents can initiate and sustain productive collaboration in design. These agents catalyze collaboration among designers working at different times and/or places by (1) detecting overlaps in the concerns of different participants in a design process, including conflict and support relationships, (2) notifying these people of these overlapping concerns, and (3) enabling a synchronous communication among these people to deal collaboratively with the overlaps. We call these agents argumentative because they represent different personal and professional viewpoints in design and because they promote argumentative discourse among designers about various issues. In addition to identifying and dealing with crucial problems of coordination and collaboration, argumentative agents enable the capture of important design rationale in the form of communication among project participants about these crucial problems.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_177636 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002