CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 514

_id 4f6b
authors Grant, Mike
year 1997
title Collaborative Research in Education for Designers Using IT (Credit)
doi https://doi.org/10.52842/conf.ecaade.1997.x.k7c
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper seeks to report on the structure, methodology and outcomes of a series of ongoing experiments between two of the Scottish Schools of Architecture. The experiments are directed at establishing the best use of video conferencing as a means of sharing resources through collaboration in design teaching.
keywords networks, video conference, design teaching, remote access
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/grant/grant.htm
last changed 2022/06/07 07:50

_id eb53
authors Asanowicz, K. and Bartnicka, M.
year 1997
title Computer analysis of visual perception - endoscopy without endoscope
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary This paper presents a method of using computer animation techniques in order to solve problems of visual pollution of city environment. It is our observation that human-inducted degradation of city environmental results from well - intentioned but inappropriate preservation actions by uninformed designers and local administration. Very often, a local municipality administration permits to build bad-fitting surroundings houses. It is usually connected with lack of visual information's about housing areas of a city, its features and characteristics. The CAMUS system (Computer Aided Management of Urban Structure) is being created at the Faculty of Architecture of Bialystok Technical University. One of its integral parts is VIA - Visual Impact of Architecture. The basic element of this system is a geometrical model of the housing areas of Bialystok. This model can be enhanced using rendering packages as they create the basis to check our perception of a given area. An inspiration of this approach was the digital endoscopy presented by J. Breen and M. Stellingwerff at the 2nd EAEA Conferences in Vienna. We are presenting the possibilities of using simple computer programs for analysis of spatial model. This contribution presents those factors of computer presentation which can demonstrate that computers achieve such effects as endoscope and often their use be much more efficient and effective.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id c0ac
authors Wormald, P.W.
year 1997
title An Enquiry into the Present And Future Role of Three Dimensional Computer Modeling as the Primary Modeling Medium for Industrial Designers
doi https://doi.org/10.52842/conf.caadria.1997.257
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 257-266
summary The role and importance of computer aided design for industrial design is growing. Computer modeling is increasingly in demand by clients because of the downstream benefits it can bring. The creation and manipulation of three dimensional form is central to an industrial designer during the design and development of new products. The paper addresses industrial design’s relationship with computer aided modeling, particularly three dimensional geometry. Design students and professionals have been observed using current computer aided design applications. Designers’ approaches and attitudes towards computer modeling have been identified. The future impact of computer aided modeling within industrial design activity and subsequent need for change, both in education and professional practice, are highlighted.
series CAADRIA
last changed 2022/06/07 07:57

_id aa2f
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1997
title An Intelligent Assistant for the Architectural Design Studio
doi https://doi.org/10.52842/conf.ecaade.1997.x.a3a
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary It seems by now fairly accepted by many researchers in the field of the Computer Aided Design that the way to realise support tools for the architectural design is by means of the realisation of Intelligent Assistants. This kind of computer program, based on the Knowledge Engineering and machine learning, finds his power and effectiveness by the Knowledge Base on which it is based. Moreover, it appears evident that the modalities of dialogue among architects and operators in the field of building industry, are inadequate to support the exchange of information that the use of these tools requires.

In fact, many efforts at international level are in progress to define tools in order to make easier the multiple exchange of information in different fields of building design. Concerning this point, protocol and ontology of structured information interchanges constitute the first steps in this sense, e.g. those under standardisation by ISO (STEP), PDT models and Esprit project ToCEE. To model these problems it has brought forth a new research field: the collaborative design one, an evolution of distributed work and concurrent design.

The CAAD Laboratory of Dipartimento di Architettura and Urbanistica per l'Ingegneria has carried out a software prototype, KAAD, based on Knowledge Engineering in the fields of hospital building and of building for aged people. This software is composed by an Interface, a Knowledge Base, a Database and Constraints. The Knowledge Base has been codified by using the formal structure of frames, and has been implemented by the Lisp language. All the elements of KB are objects

keywords Design Studio
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm
last changed 2022/06/07 07:50

_id 80f7
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2001
title Knowledge-based System to Support Architectural Design - Intelligent objects, project net-constraints, collaborative work
doi https://doi.org/10.52842/conf.ecaade.2001.080
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 80-85
summary The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simultaneous activity of specialists in different fields, often working a considerable distance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that embraces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural artefact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organism for the purpose of managing conflicts and developing possible methods of resolving them.
keywords Keywords. Collaborative Design, Architectural And Building Knowledge, Distributed Knowledge Bases, Information Management, Multidisciplinarity
series eCAADe
email
last changed 2022/06/07 07:55

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id maver_107
id maver_107
authors Chen, Yan and Maver, Tom W.
year 1997
title Integrating Design Tools within a Human Collaborative Working Context
source International Journal of Construction IT, Vol5, No 2, pp 35-53
summary Integrating design tools has been an important research subject. The work to be reported in this paper differs from many previous efforts in that it not only tackles tool-tool interoperation, but also does so within a human collaborative working context We suggest that design integration support should include not only tool interoperability, but also mechanisms for co-ordinate and control the tool use. We also argue that the higher-level management support should include not only formalised and automated mechanisms, but also semi-automated and even informal mechanisms for human designers to directly interact with each other. Within a collaborative working framework, we'll present a hybrid architecture for tool integration, in which the human designers and the design tools are assumed to be distributed while the management is centralised. In this approach, each design tool is wrapped as an autonomous service provider with its own data store; thus the project design data is physically distributed with the design tools. A meta-data augmented product model, which populates a central meta-data repository serving as a "map" for locating the distributed design objects, is devised to provide a common vocabulary for communications and to assist the management of the distributed resources and activities. A design object broker is used to mediate among the distributed tools, and the central meta-data repository. The reported work has been part of a collaborative design system called virtual studio environment We'll illustrate how the integrated design tools might be used in human design work within the virtual studio environment.
series other
email
last changed 2003/09/03 15:36

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id 24f4
authors Kaga, A., Comair, C. and Sasada, T.
year 1997
title Collaborative Design System with Network Technologies
doi https://doi.org/10.52842/conf.caadria.1997.187
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 187-196
summary During the past ten years at the Sasada Lab of Osaka University has been using computer graphics for presentation, design review and design for practical architectural design projects. Our laboratory is interested in "collaborative design” with designers, clients and citizen. We discovered that there are two major problems, initiatives and timing, and have found new solutions using network technologies. This method have solved these problems, but we have found major problems in "collaborative design” that occur the during many practical architectural design projects. This paper presents these problems and some of the solutions and research that our group has accomplished, or is pursuing in the field of "collaborative design”, using some of the latest technologies in hyper-medium and networking. This paper presents the requirements for Collaborative Design System, the new technologies and the thought of system architecture, the prototype system in practical design project, and the evaluation of prototype system.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 0f97
authors Kvan, Th., West, R. and Vera, A.
year 1997
title Choosing Tools for a Virtual Community
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 20 p.
summary This paper reports on the results of experiments carried out to identify the effects of computer-mediated communication between participants involved in a design problem. When setting up a virtual design community, choices must be made between a variety of tools, choices dictated by budget, bandwidth, ability, availability. How do you choose between the tools, which is useful and how will each affect the outcome of the design exchanges you plan? Cognitive modelling methodologies such as GOMS have been used by interface designers to capture the mechanisms of action and interaction involved in routine expert behavior. Using this technique, which breaks down an individual's behaviors into Goals, Operators, Methods, and Selection rules, it is possible to evaluate the impact of different aspects of an interface in task-specific ways. In the present study, the GOMS methodology was used to characterize the interactive behavior of knowledgeable participants as they worked on a design task under different communication-support conditions.

Pairs of participants were set a design problem and asked to solve it in face-to-face settings. The same problem was then tackled by participants in settings using two different modes of computer-supported communication: email and an electronic whiteboard. Protocols were collected and analyzed in terms of the constraints of each tool relative to the task and to each other. The GOMS methodology was used as a way to represent the collaborative design process in a way that yields information on both the productivity and performance of participants in each of the three experimental conditions. It also yielded information on the component elements of the design process, the basic cognitive building-blocks of design, thereby suggesting fundamentally new tools that might be created for interaction in virtual environments.

A further goal of the study was to explore the nature of task differences in relation to alternative platforms for communication. It was hypothesized that design processes involving significant negotiation would be less aided by computer support than straight forward design problems. The latter involve cooperative knowledge application by both participants and are therefore facilitated by information-rich forms of computer support. The former, on the other hand, requires conflict resolution and is inhibited by non face-to-face interaction. The results of this study point to the fact that the success of collaboration in virtual space is not just dependent on the nature of the tools but also on the specific nature of the collaborative task.

keywords Cognitive Models, Task-analysis, GOMS
series other
email
last changed 2003/05/15 20:50

_id f071
authors Maher, M.L., Cicognani, A. and Simoff, S.J.
year 1997
title An Experimental Study of Computer Mediated Collaborative Design
source International Journal of Design Computing, Key Centre of Design Computing, University of Sydney, Sydney
summary The use of computer technology in design practice is moving towards a distributed resource available to a team of designers. The development of software to support designers has traditionally been based on the assumption that there will be a single person using the software at a time. Recent developments have enabled the feasibility of software for two or more simultaneous users, leading to the possibility of computer mediated collaborative design (CMCD), where the computer plays the role of mediator and design information handler. There is the potential for the computer to play a more active role in collaborative design through enhanced visibility of 3D models and assistance in generating alternative designs and design critiques. With this potential the computer not only mediates the collaborative design process but actively supports the designers. Research in integrated CAD, multimedia and design database systems, virtual design studios, and design protocol studies provide the basis for a formal study of CMCD. We have developed an experimental methodology to study the difference in design semantics documented using computer applications when designing alone as compared to designing collaboratively. This methodology can be applied to study other aspects of CMCD.
series journal paper
email
last changed 2003/04/23 15:50

_id 9afb
authors Maher, M.L., Simoff, S. and Cicognani, A.
year 1997
title Observations from an experimental study of computer-mediated collaborative design
source M.L. Maher, J.S. Gero, and F Sudweeks eds. Preprints Formal Aspects of Collaborative CAD, Key Centre of Design Computing, University of Sydney, Sydney, pp.165-185
summary The use of computer technology in design practice is moving towards a distributed resource available to a team of designers. The development of software to support designers has been based largely on the assumption that there will be a single person using the software at a time. Recent developments have enabled the feasibility of software for two or more simultaneous users, leading to the possibility of computer-mediated collaborative design. Research in integrated CAD, virtual design studios, and design protocol studies provide the basis for a formal study of computer-mediated design. We develop an experimental study of computer-mediated collaborative design with the aim of collecting data on the amount and content of design semantics documented using computer applications when designing alone as compared to designing collaboratively. The experiment includes the definition of an hypothesis, aim, methodology, data collection and coding schemes. The experiment and some preliminary observations are presented, followed by directions for further research.
series other
email
last changed 2003/04/23 15:14

_id 2064
authors Murakami, Y., Morozumi, M., Iino, K., Homma, R. and Iki, K.
year 1997
title On the Development and the Use of Group Work CAD for Windows-PCS
doi https://doi.org/10.52842/conf.caadria.1997.179
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 179-186
summary With the development of high-band width communication technology, designers’ interests seem to shift gradually from a single-user, single-domain system to a network based group-work design system. So long as one regards that the design activity develops only in a concurrent, but asynchronous fashions, it is possible to say that file transfers through computer networks have already opened up the possibility of a hands-on collaborative design process in which all participants do not have to gather in the same place. However few CAD systems support group design work that develops in a concurrent synchronous fashion. This paper discusses a basic model of group work CAD systems that the authors have developed for windows PCs linked with LAN. Reviewing procedure of system operation, the authors conclude that the system could stimulate and accelerate a process of group wok design.
series CAADRIA
email
last changed 2022/06/07 07:59

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 600e
authors Gavin, Lesley
year 1999
title Architecture of the Virtual Place
doi https://doi.org/10.52842/conf.ecaade.1999.418
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 418-423
summary The Bartlett School of Graduate Studies, University College London (UCL), set up the first MSc in Virtual Environments in the UK in 1995. The course aims to synthesise and build on research work undertaken in the arts, architecture, computing and biological sciences in exploring the realms of the creation of digital and virtual immersive spaces. The MSc is concerned primarily with equipping students from design backgrounds with the skills, techniques and theories necessary in the production of virtual environments. The course examines both virtual worlds as prototypes for real urban or built form and, over the last few years, has also developed an increasing interest in the the practice of architecture in purely virtual contexts. The MSc course is embedded in the UK government sponsored Virtual Reality Centre for the Built Environment which is hosted by the Bartlett School of Architecture. This centre involves the UCL departments of architecture, computer science and geography and includes industrial partners from a number of areas concerned with the built environment including architectural practice, surveying and estate management as well as some software companies and the telecoms industry. The first cohort of students graduated in 1997 and predominantly found work in companies working in the new market area of digital media. This paper aims to outline the nature of the course as it stands, examines the new and ever increasing market for designers within digital media and proposes possible future directions for the course.
keywords Virtual Reality, Immersive Spaces, Digital Media, Education
series eCAADe
email
more http://www.bartlett.ucl.ac.uk/ve/
last changed 2022/06/07 07:51

_id 412e
authors Gross, M.D., Do, E. and McCall, R.J.
year 1997
title Collaboration and Coordination in Architectural Design: approaches to computer mediated team work
source TeamCAD 97, 17-23
summary In 1993 and 1994, instructors and students of architecture at several universities around the world* collaborated briefly on two "virtual design studio" projects. Using off-the-shelf technology of the time-email, CU-See-Me internet video, international conference calls, and exchange of CAD drawings, images, and Quicktime animations-this ambitious project explored the possibility of bringing together diverse members of an international design team together to collaborate on a short term (two week) project. Central to the "Virtual Design Studio" was a 'digital pinup board', an area where participating designers could post and view drawings and textual comments; video links and email exchange provided the media for direct communication media about designs. A report on the project [21] makes clear that the process was not without technical difficulties: a significant amount of communication concerned scheduling and coordinating file formats; disappointingly little was devoted to discussions of design issues. Although it's clear that many of the minor technical problems that inevitably plague a forward-looking effort like the Virtual Design Studio will be solved in the near term, the project also reveals the need for research on software and design practices to make computer mediated design collaboration realize its attractive promise.
series journal paper
email
last changed 2003/04/23 15:50

_id 8569
authors Kurmann, D., Elte, N. and Engeli, M.
year 1997
title Real-Time Modeling with Architectural Space
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 809-819
summary Space as an architectural theme has been explored in many ways over many centuries; designing the architectural space is a major issue in both architectural education and in the design process. Based on these observations, it follows that computer tools should be available that help architects manipulate and explore space and spatial configurations directly and interactively. Therefore, we have created and extended the computer tool Sculptor. This tool enables the architect to design interactively with the computer, directly in real-time and in three dimensions. We developed the concept of 'space as an element' and integrated it into Sculptor. These combinations of solid and void elements - positive and negative volumes - enable the architect to use the computer already in an early design stage for conceptual design and spatial studies. Similar to solids modeling but much simpler, more intuitive and in real-time this allows the creation of complex spatial compositions in 3D space. Additionally, several concepts, operations and functions are defined inherently. Windows and doors for example are negative volumes that connect other voids inside positive ones. Based on buildings composed with these spaces we developed agents to calculate sound atmosphere and estimate cost, and creatures to test building for fire escape reasons etc. The paper will look at the way to design with space from both an architect's point of view and a computer scientist's. Techniques, possibilities and consequences of this direct void modeling will be explained. It will elaborate on the principle of human machine interaction brought up by our research and used in Sculptor. It will present the possibility to create VRML models directly for the web and show some of the designs done by students using the tool in our CAAD courses.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id diss_marsh
id diss_marsh
authors Marsh, A.J.
year 1997
title Performance Analysis and Conceptual Design
source School of Architecture and Fine Arts, University of Western Australia
summary A significant amount of the research referred to by Manning has been directed into the development of computer software for building simulation and performance analysis. A wide range of computational tools are now available and see relatively widespread use in both research and commercial applications. The focus of development in this area has long been on the accurate simulation of fundamental physical processes, such as the mechanisms of heat flow though materials, turbulent air movement and the inter-reflection of light. The adequate description of boundary conditions for such calculations usually requires a very detailed mathematical model. This has tended to produce tools with a very engineering-oriented and solution-based approach. Whilst becoming increasingly popular amongst building services engineers, there has been a relatively slow response to this technology amongst architects. There are some areas of the world, particularly the UK and Germany, where the use of such tools on larger projects is routine. However, this is almost exclusively during the latter stages of a project and usually for purposes of plant sizing or final design validation. The original conceptual work, building form and the selection of materials being the result of an aesthetic and intuitive process, sometimes based solely on precedent. There is no argument that an experienced designer is capable of producing an excellent design in this way. However, not all building designers are experienced, and even fewer have a complete understanding of the fundamental physical processes involved in building performance. These processes can be complex and often highly inter-related, often even counter-intuitive. It is the central argument of this thesis that the needs of the building designer are quite different from the needs of the building services engineer, and that existing building design and performance analysis tools poorly serve these needs. It will be argued that the extensive quantitative input requirement in such tools acts to produce a psychological separation between the act of design and the act of analysis. At the conceptual stage, building geometry is fluid and subject to constant change, with solid quantitative information relatively scarce. Having to measure off surface areas or search out the emissivity of a particular material forces the designer to think mathematically at a time when they are thinking intuitively. It is, however, at this intuitive stage that the greatest potential exists for performance efficiencies and environmental economies. The right orientation and fenestration choice can halve the airconditioning requirement. Incorporating passive solar elements and natural ventilation pathways can eliminate it altogether. The building form can even be designed to provide shading using its own fabric, without any need for additional structure or applied shading. It is significantly more difficult and costly to retrofit these features at a later stage in a project’s development. If the role of the design tool is to serve the design process, then a new approach is required to accommodate the conceptual phase. This thesis presents a number of ideas on what that approach may be, accompanied by some example software that demonstrates their implementation.
series thesis:PhD
more http://www.squ1.com/site.html
last changed 2003/11/28 07:33

_id 2e5a
authors Matsumoto, N. and Seta, S.
year 1997
title A history and application of visual simulation in which perceptual behaviour movement is measured.
source Architectural and Urban Simulation Techniques in Research and Education [3rd EAEA-Conference Proceedings]
summary For our research on perception and judgment, we have developed a new visual simulation system based on the previous system. Here, we report on the development history of our system and on the current research employing it. In 1975, the first visual simulation system was introduced, witch comprised a fiberscope and small-scale models. By manipulating the fiberscope's handles, the subject was able to view the models at eye level. When the pen-size CCD TV camera came out, we immediately embraced it, incorporating it into a computer controlled visual simulation system in 1988. It comprises four elements: operation input, drive control, model shooting, and presentation. This system was easy to operate, and the subject gained an omnidirectional, eye-level image as though walking through the model. In 1995, we began developing a new visual system. We wanted to relate the scale model image directly to perceptual behavior, to make natural background images, and to record human feelings in a non-verbal method. Restructuring the above four elements to meet our equirements and adding two more (background shooting and emotion spectrum analysis), we inally completed the new simulation system in 1996. We are employing this system in streetscape research. Using the emotion spectrum system, we are able to record brain waves. Quantifying the visual effects through these waves, we are analyzing the relation between visual effects and physical elements. Thus, we are presented with a new aspect to study: the relationship between brain waves and changes in the physical environment. We will be studying the relation of brain waves in our sequential analysis of the streetscape.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_31451 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002