CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 463

_id 76ba
authors Bermudez, Julio
year 1997
title Cyber(Inter)Sections: Looking into the Real Impact of The Virtual in the Architectural Profession
source Proceedings of the Symposium on Architectural Design Education: Intersecting Perspectives, Identities and Approaches. Minneapolis, MN: College of Architecture & Landscape Architecture, pp. 57-63
summary As both the skepticism and 'hype' surrounding cyberspace vanish under the weight of ever increasing power, demand, and use of information, the architectural discipline must prepare for significant changes. For cyberspace is remorselessly cutting through the dearest structures, rituals, roles, and modes of production in our profession. Yet, this section is not just a detached cut through the existing tissues of the discipline. Rather it is an inter-section, as cyberspace becomes also transformed in the act of piercing. This phenomenon is causing major transformations in at least three areas: 1. Cyberspace is substantially altering the way we produce and communicate architectural information. The arising new working environment suggests highly hybrid and networked conditions that will push the productive and educational landscape of the discipline towards increasing levels of fluidity, exchanges, diversity and change. 2. It has been argued that cyberspace-based human and human-data interactions present us with the opportunity to foster a more free marketplace of ideologies, cultures, preferences, values, and choices. Whether or not the in-progress cyberincisions have the potential to go deep enough to cure the many illnesses afflicting the body of our discipline need to be considered seriously. 3. Cyberspace is a new place or environment wherein new kinds of human activities demand unprecedented types of architectural services. Rather than being a passing fashion, these new architectural requirements are destined to grow exponentially. We need to consider the new modes of practice being created by cyberspace and the education required to prepare for them. This paper looks at these three intersecting territories showing that it is academia and not practice that is leading the profession in the incorporation of virtuality into architecture. Rafael Moneo's words come to mind. [2]
series other
email
last changed 2003/11/21 15:16

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
doi https://doi.org/10.52842/conf.caadria.2010.443
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id d869
authors Chu, C.-C., Dani, T.H. and Gadh, R.
year 1997
title Multi-sensory user interface for a virtual-reality-based computer-aided design system
source Computer-Aided Design, Vol. 29 (10) (1997) pp. 709-725
summary The generation of geometric shapes called `geometric concept designs' via the multi-sensory user interface of a virtual reality (VR) based system motivates the currentresearch. In this new VR-based system, geometric designs can be more effectively inputted into the computer in a physically intuitive way. The interaction mechanism issimilar to the way in which industrial designers sit and discuss concept design shapes across a table from each other, prior to making a final decision about the productdetails. By using different sensory modalities, such as voice, hand motions and gestures, product designers can convey design ideas through the VR-basedcomputer-aided design (CAD) system. In this scenario, the multi-sensory interface between human and computer plays a central role with respect to usability, usefulnessand accuracy. The current paper focuses on determining the requirements for the multi-sensory user interface and assessing the applications of different input and outputmechanisms in the virtual environment (VE). In order to evaluate this multi-sensory user interface, this paper formulates the typical activities in product shape design intoa set of requirements for the VR-CAD system. On the basis of these requirements, we interviewed typical CAD users about the effectiveness of using different sensoryinput and output interaction mechanisms such as visual, auditory and tactile. According to the results of these investigations, a nodal network of design activity thatdefines the multi-sensory user interface of the VR-CAD system is determined in the current research. The VR-CAD system is still being developed. However, voicecommand input, hand motion input, three-dimensional visual output and auditory output have been successfully integrated into the current system. Moreover, severalmechanical parts have been successfully created through the VR interface. Once designers use the VR-CAD system that we are currently developing, the interfacerequirements determined in the current paper may be verified or refined. The objectives of the current research are to expand the frontiers of product design and establisha new paradigm for the VR-based conceptual shape design system.
keywords Virtual Reality, Multi-Sensory User Interface, Conceptual Shape Design, Sensory Interaction Mechanism
series journal paper
last changed 2003/05/15 21:33

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id b8a4
authors Dani, Tushar H and Gadh, Rajit
year 1997
title Creation of concept shape designs via a virtual reality interface
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 555-563
summary This paper describes an approach for creating concept shape designs in a virtual reality environment--COVIRDS (COnceptual VIRtual Design System. Conceptdesign refers to the ab initio design of a product or part. In concept design, the product details such as shape features and exact dimensions are not rigidly definedand the designer has some freedom in determining the shape and dimensions of the product. Current CAD require the designer to specify shape and dimensions tocreate CAD models of products even though these are probably not necessary at the concept development stage. COVIRDS overcomes these drawbacks by providing abi-modal voice and hand-tracking based user interface to the VR-based CAD modeling environment. This interface allows rapid concept design creation withoutrequiring time consuming shape description and the tedious specifications of exact dimensions.
keywords Concept Shape Design, Virtual Reality Interfaces, Geometric Modeling
series journal paper
last changed 2003/05/15 21:33

_id 0627
authors Dijkstra, J. and Timmermans, H.J.P.
year 1997
title Exploring the Possibilities of Conjoint Measurement as a Decision-Making Tool for Virtual Wayfinding Environments
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 61-71
doi https://doi.org/10.52842/conf.caadria.1997.061
summary Virtual reality systems may have a lot to offer in architecture and urban planning when visual and active environments may have a dramatic impact on individual preferences and choice behaviour. Conjoint analysis involves the use of designed hypothetical choice situations to measure individuals’ preferences and predict their choice in new situations. Conjoint experiments involve the design and analysis of hypothetical decision tasks. Alternatives are described by their main features, called attributes. Multiple hypothetical alternatives, called product profiles, are generated and presented to respondents, who are requested to express their degree of preference for these profiles or choose between these profiles. Conjoint experiments have become a popular tool to model individual preferences and decision-making in a variety of research areas. Most studies of conjoint analysis have involved a verbal description of product profiles, although some studies have used a pictorial presentation of production profiles. Virtual reality systems offer the potential of moving the response format beyond these traditional response modes. This paper describes a particular aspect of an ongoing research project which aims to develop a virtual reality based system for conjoint analysis. The principles underlying the system will be illustrated by a simple example of wayfinding in a virtual environment.
series CAADRIA
last changed 2022/06/07 07:55

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 2a5e
authors Does, J. van der and Giró, H.
year 1997
title Design communication and image processing
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary In the proceedings of the first EAEA conference, 1993, I mentioned our first study focused on refining endoscopic video images of a detailed architectural model and drawings. The study was based on work with 900 subjects, of which 200 were professional architects. It has led to a number of technical improvements. In the second study we compared computer-aided design techniques with two techniques from the first study, endoscopic video recordings and coloured and black and white elevations and perspective drawings. Four different groups of 50 subjects took part in this research. We found that computer images are invariably judged to be of moderate value, while drawings yielded consistently high scores. Endoscopic video recordings of the scale model received high scores as far as emotional response is concerned, and moderate scores when the participants were questioned on the actual content of the recordings.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id 837b
authors Elger, Dietrich and Russell, Peter
year 2000
title Using the World Wide Web as a Communication and Presentation Forum for Students of Architecture
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 61-64
doi https://doi.org/10.52842/conf.ecaade.2000.061
summary Since 1997, the Institute for Industrial Building Production (ifib) has been carrying out upper level design studios under the framework of the Netzentwurf or Net-Studio. The Netzentwurf is categorized as a virtual design studio in that the environment for presentation, criticism and communication is web based. This allows lessons learned from research into Computer Supported Cooperative Work (CSCW) to be adapted to the special conditions indigenous to the architectural design studio. Indeed, an aim of the Netzentwurf is the creation and evolution of a design studio planing platform. In the Winter semester 1999-2000, ifib again carried out two Netzentwurf studios. involving approximately 30 students from the Faculty of Architecture, University of Karlsruhe. The projects differed from previous net studios in that both studios encompassed an inter-university character in addition to the established framework of the Netzentwurf. The first project, the re-use of Fort Kleber in Wolfisheim by Strasbourg, was carried out as part of the Virtual Upperrhine University of Architecture (VuuA) involving over 140 students from various disciplines in six institutions from five universities in France, Switzerland and Germany. The second project, entitled "Future, Inc.", involved the design of an office building for a scenario 20 years hence. This project was carried out in parallel with the Technical University Cottbus using the same methodology and program for two separate building sites.
keywords Virtual Design Studios, Architectural Graphics, Presentation Techniques
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id c557
authors Fuchs, W. and Martinico, A.
year 1997
title The V.C.net--A digital study in architecture
source Automation in Construction 6 (4) (1997) pp. 335-339
summary The V.C.net project is an Internet-based educational and communication tool for the architectural community. Its goal is to encourage students from architecture programs across the country and around the world to examine problems and collaborate in the exploration of ideas through the World Wide Web. The central concept of the project involves the creation of a simulated, vital urban environment constructed from various forms of digital data. This `virtual city' will be comprised of projects executed by students of architecture and urban design in US and abroad. Projects will be proposed for specific sites and will reflect real-world questions as they are mirrored in the virtual world. The city exists as a heuristic tool and is not intended as a copy of any existing human habitat. The ultimate goal of the project is to create a dynamic platform to study the interrelationship of various forces effecting urban development: architecture, planning, civil engineering, economics, social sciences, etc. The project originates at the School of Architecture of the University of Detroit Mercy and is intended to be truly interdisciplinary.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 1f0c
authors Fukai, D.
year 1997
title PCIS: a piece-based construction information system on the world wide web
source Automation in Construction 6 (4) (1997) pp. 287-298
summary This paper describes a piece-based construction information system organized as a hypergraphic virtual environment on the World Wide Web. An array of cubes on the site's animated splash-page acts as a directory to a collection of data-theaters that give this information its virtual form. A mouse click on one of these cubes leads to an orthographic model of the object to be constructed. This model is an index to a database of scaled drawings, animations, and specifications. The index is hypergraphic because a click on the image of one of the pieces of the model leads to a data page that provides information about that piece in the context of its assembly. Panels surround the index to act as an interface to projections of the pieces of the object. These projections include elevations, plans, slices, and dimensioned details. A click on the elevation-panel leads to information on finishes, framing, and construction of each face of the object. From above, the plan-panel shows roofing, framing, floor plan, foundation layout, excavation, and utilities as an animation of the construction process. There are also animated slice-panels that cut through the object to give heights and materials. A click on one of these panels leads to two-dimensional drawings and details of the actual construction. The orthographic index morphs to a framed VR environment where the model can be turned and viewed in perspective. A click on one of the pieces of the model in this information the VR environment leads to specifications and manufacturing information about the materials of its construction. The user accesses this information through a tool-palette to communicate with design team members. In this way, the team can coordinate the document's development, review progress, and make changes to the information system. This breaks the notion of a construction document as an object-of-exchange and suggests the use of the computer as a medium of communication that facilitates the design and construction process.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 600e
authors Gavin, Lesley
year 1999
title Architecture of the Virtual Place
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 418-423
doi https://doi.org/10.52842/conf.ecaade.1999.418
summary The Bartlett School of Graduate Studies, University College London (UCL), set up the first MSc in Virtual Environments in the UK in 1995. The course aims to synthesise and build on research work undertaken in the arts, architecture, computing and biological sciences in exploring the realms of the creation of digital and virtual immersive spaces. The MSc is concerned primarily with equipping students from design backgrounds with the skills, techniques and theories necessary in the production of virtual environments. The course examines both virtual worlds as prototypes for real urban or built form and, over the last few years, has also developed an increasing interest in the the practice of architecture in purely virtual contexts. The MSc course is embedded in the UK government sponsored Virtual Reality Centre for the Built Environment which is hosted by the Bartlett School of Architecture. This centre involves the UCL departments of architecture, computer science and geography and includes industrial partners from a number of areas concerned with the built environment including architectural practice, surveying and estate management as well as some software companies and the telecoms industry. The first cohort of students graduated in 1997 and predominantly found work in companies working in the new market area of digital media. This paper aims to outline the nature of the course as it stands, examines the new and ever increasing market for designers within digital media and proposes possible future directions for the course.
keywords Virtual Reality, Immersive Spaces, Digital Media, Education
series eCAADe
email
more http://www.bartlett.ucl.ac.uk/ve/
last changed 2022/06/07 07:51

_id aa79
authors Kardos, K.
year 1997
title Laboratorial verification of ideas for urban space compositional design completion
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary The subject-matter of the contribution is presentation of the non-conventional didactical methods application in architectural education and research at the Faculty of Architecture of the Slovak Technical University in Bratislava. It is an application of a laboratorial method of architectural endoscopy based on a model urban space simulation principle and on the acquirement of an electrooptical visual display image information from a recording periscope unit interaction in the real time and the real model space, with the option of spontaneous semantic evaluation of the output on a video-monitor and of a synchronic timing process recording on a magnetoscope. Application of a consequential powerful PC-configuration with creative software enables further digital sequential processing both on the graphical output and for multimedial presentation.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
doi https://doi.org/10.52842/conf.acadia.1998.016
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id 8569
authors Kurmann, D., Elte, N. and Engeli, M.
year 1997
title Real-Time Modeling with Architectural Space
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 809-819
summary Space as an architectural theme has been explored in many ways over many centuries; designing the architectural space is a major issue in both architectural education and in the design process. Based on these observations, it follows that computer tools should be available that help architects manipulate and explore space and spatial configurations directly and interactively. Therefore, we have created and extended the computer tool Sculptor. This tool enables the architect to design interactively with the computer, directly in real-time and in three dimensions. We developed the concept of 'space as an element' and integrated it into Sculptor. These combinations of solid and void elements - positive and negative volumes - enable the architect to use the computer already in an early design stage for conceptual design and spatial studies. Similar to solids modeling but much simpler, more intuitive and in real-time this allows the creation of complex spatial compositions in 3D space. Additionally, several concepts, operations and functions are defined inherently. Windows and doors for example are negative volumes that connect other voids inside positive ones. Based on buildings composed with these spaces we developed agents to calculate sound atmosphere and estimate cost, and creatures to test building for fire escape reasons etc. The paper will look at the way to design with space from both an architect's point of view and a computer scientist's. Techniques, possibilities and consequences of this direct void modeling will be explained. It will elaborate on the principle of human machine interaction brought up by our research and used in Sculptor. It will present the possibility to create VRML models directly for the web and show some of the designs done by students using the tool in our CAAD courses.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 01e7
authors Kvan, Thomas
year 1997
title Studio Teaching Without Meeting: Pedagogical Aspects of a Virtual Design Studio
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 163-177
doi https://doi.org/10.52842/conf.caadria.1997.163
summary Virtual Design Studios are proliferating. Schools of architecture are eagerly experimenting with the technology of the Internet. Discussions about Virtual Design Studios typically focus on technological issues – which hardware, what software – or environments – MOOs, ftp. Recently, some papers have been written on the perceptual issues and the social aspects of remote design collaborations, thus contributing to some of the contextual issues within which virtual studios are conducted. This paper contributes another perspective, presenting a review of the pedagogical issues raised in a VDS. It examines the difficulties and opportunities which present themselves in teaching a Virtual Design Studio. Based on reviews of problem-based learning and examinations of architectural studio learning, including several experiences in conducting virtual studios, the author considers the particularities of conducting a studio in the virtual world, the motivations for these studios, the experiences of students and the results obtained. From this background, the author identifies benefits and drawbacks of teaching in this manner, leading then to guidelines for framing and conducting effective and successful Virtual Design Studios and raises issues for further discussion.
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id sigradi2006_c012b
id sigradi2006_c012b
authors Rodriguez Barros, Diana and Carmena, Sonia
year 2006
title Estudio Descriptivo de Prácticas Padagógicas Mediadas por Tecnologías Digitales en Facultades de Arquitectura y Diseño asociadas a la buena Enseñanza [Descriptive study of pedagogical practices mediated by digital technologies in school of architecture and design, associated to the good education]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 191-194
summary It is presented a descriptive type study link to the documentary investigation. It is considers to understand, interpretate and critically reconstruct the present practices of proyectual education in studio of school of architecture and design of the region in virtual surroundings, tie to good education. It was used the Burbules & Callister (2001) new emergent postecnocratic approach. It is boarded from the perspective of the authors, in its natural scenes, in its all complexity and its implicances. One worked with a quanti-qualitative methodology, where revision techniques, analysis, evaluation and interpretation of documental textual and visual materials from primary sources were integrated. One has been based on the selection of exposed works in Sigradi congresses, since its creation in 1997 to the present, with extended and updated versions of the authors. As conclusions are recognized professors that show expertise and disciplinar control, that develop investigation tasks tie to the education practices, that incorporate technologies valuating limitations and advantages, and that has recognized the multiple implicit effects in the technologically mediated practices.
series SIGRADI
email
last changed 2016/03/10 09:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_462419 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002