CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 521

_id a93b
authors Anders, Peter
year 1997
title Cybrids: Integrating Cognitive and Physical Space in Architecture
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 17-34
doi https://doi.org/10.52842/conf.acadia.1997.017
summary People regularly use non-physical, cognitive spaces to navigate and think. These spaces are important to architects in the design and planning of physical buildings. Cognitive spaces inform design - often underlying principles of architectural composition. They include zones of privacy, territory and the space of memory and visual thought. They let us to map our environment, model or plan projects, even imagine places like Heaven or Hell.

Cyberspace is an electronic extension of this cognitive space. Designers of virtual environments already know the power these spaces have on the imagination. Computers are no longer just tools for projecting buildings. They change the very substance of design. Cyberspace is itself a subject for design. With computers architects can design space both for physical and non-physical media. A conscious integration of cognitive and physical space in architecture can affect construction and maintenance costs, and the impact on natural and urban environments.

This paper is about the convergence of physical and electronic space and its potential effects on architecture. The first part of the paper will define cognitive space and its relationship to cyberspace. The second part will relate cyberspace to the production of architecture. Finally, a recent project done at the University of Michigan Graduate School of Architecture will illustrate the integration of physical and cyberspaces.

series ACADIA
email
last changed 2022/06/07 07:54

_id c1ad
authors Cheng, Nancy Yen-wen
year 1997
title Teaching CAD with Language Learning Methods
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 173-188
doi https://doi.org/10.52842/conf.acadia.1997.173
summary By looking at computer aided design as design communication we can use pedagogical methods from the well-developed discipline of language learning. Language learning breaks down a complex field into attainable steps, showing how learning strategies and attitudes can enhance mastery. Balancing the linguistic emphases of organizational analysis, communicative intent and contextual application can address different learning styles. Guiding students in learning approaches from language study will equip them to deal with constantly changing technology.

From overall curriculum planning to specific exercises, language study provides a model for building a learner-centered education. Educating students about the learning process, such as the variety of metacognitive, cognitive and social/affective strategies can improve learning. At an introductory level, providing a conceptual framework and enhancing resource-finding, brainstorming and coping abilities can lead to threshold competence. Using kit-of-parts problems helps students to focus on technique and content in successive steps, with mimetic and generative work appealing to different learning styles.

Practicing learning strategies on realistic projects hones the ability to connect concepts to actual situations, drawing on resource-usage, task management, and problem management skills. Including collaborative aspects in these projects provides the motivation of a real audience and while linking academic study to practical concerns. Examples from architectural education illustrate how the approach can be implemented.

series ACADIA
email
last changed 2022/06/07 07:55

_id 0627
authors Dijkstra, J. and Timmermans, H.J.P.
year 1997
title Exploring the Possibilities of Conjoint Measurement as a Decision-Making Tool for Virtual Wayfinding Environments
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 61-71
doi https://doi.org/10.52842/conf.caadria.1997.061
summary Virtual reality systems may have a lot to offer in architecture and urban planning when visual and active environments may have a dramatic impact on individual preferences and choice behaviour. Conjoint analysis involves the use of designed hypothetical choice situations to measure individuals’ preferences and predict their choice in new situations. Conjoint experiments involve the design and analysis of hypothetical decision tasks. Alternatives are described by their main features, called attributes. Multiple hypothetical alternatives, called product profiles, are generated and presented to respondents, who are requested to express their degree of preference for these profiles or choose between these profiles. Conjoint experiments have become a popular tool to model individual preferences and decision-making in a variety of research areas. Most studies of conjoint analysis have involved a verbal description of product profiles, although some studies have used a pictorial presentation of production profiles. Virtual reality systems offer the potential of moving the response format beyond these traditional response modes. This paper describes a particular aspect of an ongoing research project which aims to develop a virtual reality based system for conjoint analysis. The principles underlying the system will be illustrated by a simple example of wayfinding in a virtual environment.
series CAADRIA
last changed 2022/06/07 07:55

_id acadia07_040
id acadia07_040
authors Hyde, Rory
year 2007
title Punching Above Your Weight: Digital Design Methods and Organisational Change in Small Practice
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 40-47
doi https://doi.org/10.52842/conf.acadia.2007.040
summary Expanding bodies of knowledge imply expanding teams to manage this knowledge. Paradoxically, it can be shown that in situations of complexity—which increasingly characterise the production of architecture generally—the small practice or small team could be at an advantage. This is due to the increasingly digital nature of the work undertaken and artefacts produced by practices, enabling production processes to be augmented with digital toolsets and for tight project delivery networks to be forged with other collaborators and consultants (Frazer 2006). Furthermore, as Christensen argues, being small may also be desirable, as innovations are less likely to be developed by large, established companies (Christensen 1997). By working smarter, and managing the complexity of design and construction, not only can the small practice “punch above its weight” and compete with larger practices, this research suggests it is a more appropriate model for practice in the digital age. This paper demonstrates this through the implementation of emerging technologies and strategies including generative and parametric design, digital fabrication, and digital construction. These strategies have been employed on a number of built and un-built case-study projects in a unique collaboration between RMIT University’s SIAL lab and the award-winning design practice BKK Architects.
series ACADIA
email
last changed 2022/06/07 07:50

_id 0bc0
authors Kellett, R., Brown, G.Z., Dietrich, K., Girling, C., Duncan, J., Larsen, K. and Hendrickson, E.
year 1997
title THE ELEMENTS OF DESIGN INFORMATION FOR PARTICIPATION IN NEIGHBORHOOD-SCALE PLANNING
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 295-304
doi https://doi.org/10.52842/conf.acadia.1997.295
summary Neighborhood scale planning and design in many communities has been evolving from a rule-based process of prescriptive codes and regulation toward a principle- and performance-based process of negotiated priorities and agreements. Much of this negotiation takes place in highly focused and interactive workshop or 'charrette' settings, the best of which are characterized by a fluid and lively exchange of ideas, images and agendas among a diverse mix of citizens, land owners, developers, consultants and public officials. Crucial to the quality and effectiveness of the exchange are techniques and tools that facilitate a greater degree of understanding, communication and collaboration among these participants.

Digital media have a significant and strategic role to play toward this end. Of particular value are representational strategies that help disentangle issues, clarify alternatives and evaluate consequences of very complex and often emotional issues of land use, planning and design. This paper reports on the ELEMENTS OF NEIGHBORHOOD, a prototype 'electronic notebook' (relational database) tool developed to bring design information and example 'to the table' of a public workshop. Elements are examples of the building blocks of neighborhood (open spaces, housing, commercial, industrial, civic and network land uses) derived from built examples, and illustrated with graphic, narrative and numeric representations relevant to planning, design, energy, environmental and economic performance. Quantitative data associated with the elements can be linked to Geographic Information based maps and spreadsheet based-evaluation models.

series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id b357
authors Molinari, Claudio and Talamo, Cinzia
year 1997
title A Hypertextual Didactic Tool for a Maintenance Oriented Design
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 263-275
summary This paper presents a research concerning the theme of the support didactic tools for a maintenance oriented design. The work takes a starting point in two remarks: the first is the importance of maintainability requirements prevision for the correct planning of a project and for the formulation of maintenance strategies; the second is the lack of information (examples, references, laws, quality and performance plans) easily available for students and designers. The tool thas has been pointed out has the aim to provide the information - belonging to different categories of knowledge - useful for a maintainability conscious design, according the free navigation modalities tipical of hypertextual applications. Starting from a matrix that associates building subsistems and maintainability requirements the student has the possibility to navigate into a network in which it is possible to have information about: european laws concerning maintenance, examples (drawings, pictures and description) of architectures and of industrial components that regard particular maintainability solutions and a plan in which are schematized the appropriate dimensions and the morfological configurations for the maintenance activities. This hypertextual didactic tool has two different educational applications: 1) during design training courses, it can support in self-training about maintenance aspects; 2) it can become a specialistic module inside an integrated CAAD system developed to combine the graphic representation with different performances evalutions.
series AVOCAAD
last changed 2005/09/09 10:48

_id 0de7
authors Müller, Christian
year 1997
title An Advanced Groupware Approach for an Integrated Planning Process in Building Construction
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 475-480
summary Increasing complexity of today's buildings requires a high level of integration in the planning process. Common planning strategies, where individual project partners cooperate mainly to exchange results, are not suitable to jointly develop project goals and objectives. Integrated planning, a more holistic approach to deal with complex problems, is based on a high degree of communication among team members and leads to a goal oriented cooperation. This paper focuses on the application of an advanced groupware approach suitable to support efficiently an integrated design process in construction. First an appropriate planning process model will be presented, which differs from common product model approaches and takes into account the great importance of team- and goal orientation in integrated planning. Then the idea of an open CSCW platform is proposed, which basic structure and containing elements are based on the defined planning model. Appropriate cooperative planning scenarios can then be ad-hoc modeled and configured dynamically on this CSCW platform according to the requirements of the specific project. For the participants of the planning process, the resulting groupware approach represents an integrated computer based working environment. This environment allows a kind of immersion into the project. Finally a prototypical implementation of this approach will be shortly discussed.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 2dc0
authors Arkin, H. and Paciuk, M.
year 1997
title Evaluating intelligent buildings according to level of service systems integration
source Automation in Construction 6 (5-6) (1997) pp. 471-479
summary The intelligent building is supposed to provide the environment and means for an optimal utilization of the building, according to its designation. This extended function of a building can be achieved only by means of an extensive use of building service systems, such as HVAC; electric power; communication; safety and security; transportation; sanitation, etc. Building intelligence is not related to the sophistication of service systems in a building, but rather to the integration among the various service systems, and between the systems and the building structure. Systems' integration can be accomplished through teamwork planning of the building, starting at the initial design stages of the building. This paper examines some existing buildings claimed to be "intelligent", according to their level of systems' integration.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 0c91
authors Asanowicz, Aleksander
year 1997
title Computer - Tool vs. Medium
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.b2e
summary We have arrived an important juncture in the history of computing in our profession: This history is long enough to reveal clear trends in the use of computing, but not long to institutionalize them. As computers peremate every area of architecture - from design and construction documents to project administration and site supervision - can “virtual practice” be far behind? In the old days, there were basically two ways of architects working. Under stress. Or under lots more stress. Over time, someone forwarded the radical motion that the job could be easier, you could actually get more work done. Architects still have been looking for ways to produce more work in less time. They need a more productive work environment. The ideal environment would integrate man and machine (computer) in total harmony. As more and more architects and firms invest more and more time, money, and effort into particular ways of using computers, these practices will become resistant to change. Now is the time to decide if computing is developing the way we think it should. Enabled and vastly accelerated by technology, and driven by imperatives for cost efficiency, flexibility, and responsiveness, work in the design sector is changing in every respect. It is stands to reason that architects must change too - on every level - not only by expanding the scope of their design concerns, but by altering design process. Very often we can read, that the recent new technologies, the availability of computers and software, imply that use of CAAD software in design office is growing enormously and computers really have changed the production of contract documents in architectural offices.
keywords Computers, CAAD, Cyberreal, Design, Interactive, Medium, Sketches, Tools, Virtual Reality
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/asan/asanowic.htm
last changed 2022/06/07 07:50

_id 411c
authors Ataman, Osman and Bermúdez (Ed.)
year 1999
title Media and Design Process [Conference Proceedings]
source ACADIA ‘99 Proceedings / ISBN 1-880250-08-X / Salt Lake City 29-31 October 1999, 353 p.
doi https://doi.org/10.52842/conf.acadia.1999
summary Throughout known architectural history, representation, media and design have been recognized to have a close relationship. This relationship is inseparable; representation being a means for engaging in design thinking and making and this activity requiring media. Interpretations as to what exactly this relationship is or means have been subject to debate, disagreement and change along the ages. Whereas much has been said about the interactions between representation and design, little has been elaborated on the relationship between media and design. Perhaps, it is not until now, surrounded by all kinds of media at the turn of the millennium, as Johnson argues (1997), that we have enough context to be able to see and address the relationship between media and human activities with some degree of perspective.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id 34b8
authors Batie, D.L.
year 1997
title The incorporation of construction history in architectural history: the HISTCON interactive computer program
source Automation in Construction 6 (4) (1997) pp. 275-285
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 76ba
authors Bermudez, Julio
year 1997
title Cyber(Inter)Sections: Looking into the Real Impact of The Virtual in the Architectural Profession
source Proceedings of the Symposium on Architectural Design Education: Intersecting Perspectives, Identities and Approaches. Minneapolis, MN: College of Architecture & Landscape Architecture, pp. 57-63
summary As both the skepticism and 'hype' surrounding cyberspace vanish under the weight of ever increasing power, demand, and use of information, the architectural discipline must prepare for significant changes. For cyberspace is remorselessly cutting through the dearest structures, rituals, roles, and modes of production in our profession. Yet, this section is not just a detached cut through the existing tissues of the discipline. Rather it is an inter-section, as cyberspace becomes also transformed in the act of piercing. This phenomenon is causing major transformations in at least three areas: 1. Cyberspace is substantially altering the way we produce and communicate architectural information. The arising new working environment suggests highly hybrid and networked conditions that will push the productive and educational landscape of the discipline towards increasing levels of fluidity, exchanges, diversity and change. 2. It has been argued that cyberspace-based human and human-data interactions present us with the opportunity to foster a more free marketplace of ideologies, cultures, preferences, values, and choices. Whether or not the in-progress cyberincisions have the potential to go deep enough to cure the many illnesses afflicting the body of our discipline need to be considered seriously. 3. Cyberspace is a new place or environment wherein new kinds of human activities demand unprecedented types of architectural services. Rather than being a passing fashion, these new architectural requirements are destined to grow exponentially. We need to consider the new modes of practice being created by cyberspace and the education required to prepare for them. This paper looks at these three intersecting territories showing that it is academia and not practice that is leading the profession in the incorporation of virtuality into architecture. Rafael Moneo's words come to mind. [2]
series other
email
last changed 2003/11/21 15:16

_id 536e
authors Bouman, Ole
year 1997
title RealSpace in QuickTimes: architecture and digitization
source Rotterdam: Nai Publishers
summary Time and space, drastically compressed by the computer, have become interchangeable. Time is compressed in that once everything has been reduced to 'bits' of information, it becomes simultaneously accessible. Space is compressed in that once everything has been reduced to 'bits' of information, it can be conveyed from A to B with the speed of light. As a result of digitization, everything is in the here and now. Before very long, the whole world will be on disk. Salvation is but a modem away. The digitization process is often seen in terms of (information) technology. That is to say, one hears a lot of talk about the digital media, about computer hardware, about the modem, mobile phone, dictaphone, remote control, buzzer, data glove and the cable or satellite links in between. Besides, our heads are spinning from the progress made in the field of software, in which multimedia applications, with their integration of text, image and sound, especially attract our attention. But digitization is not just a question of technology, it also involves a cultural reorganization. The question is not just what the cultural implications of digitization will be, but also why our culture should give rise to digitization in the first place. Culture is not simply a function of technology; the reverse is surely also true. Anyone who thinks about cultural implications, is interested in the effects of the computer. And indeed, those effects are overwhelming, providing enough material for endless speculation. The digital paradigm will entail a new image of humankind and a further dilution of the notion of social perfectibility; it will create new notions of time and space, a new concept of cause and effect and of hierarchy, a different sort of public sphere, a new view of matter, and so on. In the process it will indubitably alter our environment. Offices, shopping centres, dockyards, schools, hospitals, prisons, cultural institutions, even the private domain of the home: all the familiar design types will be up for review. Fascinated, we watch how the new wave accelerates the process of social change. The most popular sport nowadays is 'surfing' - because everyone is keen to display their grasp of dirty realism. But there is another way of looking at it: under what sort of circumstances is the process of digitization actually taking place? What conditions do we provide that enable technology to exert the influence it does? This is a perspective that leaves room for individual and collective responsibility. Technology is not some inevitable process sweeping history along in a dynamics of its own. Rather, it is the result of choices we ourselves make and these choices can be debated in a way that is rarely done at present: digitization thanks to or in spite of human culture, that is the question. In addition to the distinction between culture as the cause or the effect of digitization, there are a number of other distinctions that are accentuated by the computer. The best known and most widely reported is the generation gap. It is certainly stretching things a bit to write off everybody over the age of 35, as sometimes happens, but there is no getting around the fact that for a large group of people digitization simply does not exist. Anyone who has been in the bit business for a few years can't help noticing that mum and dad are living in a different place altogether. (But they, at least, still have a sense of place!) In addition to this, it is gradually becoming clear that the age-old distinction between market and individual interests are still relevant in the digital era. On the one hand, the advance of cybernetics is determined by the laws of the marketplace which this capital-intensive industry must satisfy. Increased efficiency, labour productivity and cost-effectiveness play a leading role. The consumer market is chiefly interested in what is 'marketable': info- and edutainment. On the other hand, an increasing number of people are not prepared to wait for what the market has to offer them. They set to work on their own, appropriate networks and software programs, create their own domains in cyberspace, domains that are free from the principle whereby the computer simply reproduces the old world, only faster and better. Here it is possible to create a different world, one that has never existed before. One, in which the Other finds a place. The computer works out a new paradigm for these creative spirits. In all these distinctions, architecture plays a key role. Owing to its many-sidedness, it excludes nothing and no one in advance. It is faced with the prospect of historic changes yet it has also created the preconditions for a digital culture. It is geared to the future, but has had plenty of experience with eternity. Owing to its status as the most expensive of arts, it is bound hand and foot to the laws of the marketplace. Yet it retains its capacity to provide scope for creativity and innovation, a margin of action that is free from standardization and regulation. The aim of RealSpace in QuickTimes is to show that the discipline of designing buildings, cities and landscapes is not only a exemplary illustration of the digital era but that it also provides scope for both collective and individual activity. It is not just architecture's charter that has been changed by the computer, but also its mandate. RealSpace in QuickTimes consists of an exhibition and an essay.
series other
email
last changed 2003/04/23 15:14

_id 2e36
authors Bourdakis, Vassilis
year 1997
title Making Sense of the City
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 663-678
summary Large-scale, three dimensional, interactive computer models of cities are becoming feasible making it possible to test their suitability as a visualisation tool for the design and planning process, for data visualisation where socio-economic and physical data can be mapped on to the 3D form of the city and as an urban information repository. The CASA developed models of the City of Bath and London's West End in VRML format, are used as examples to illustrate the problems arising. The aim of this paper is to reflect on key issues related to interaction within urban models, data mapping techniques and appropriate metaphors for presenting information.
keywords 3D City modeling, Urban Modelling, Virtual Environments, Navigation, Data Mapping, VRML
series CAAD Futures
email
last changed 2003/11/21 15:16

_id ecfd
authors Breen, Jack
year 1997
title Virtual Horizons
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 109-124
summary This essay explores directions for Computer Aided Architectural Design. It focuses on the state of the 'art' in the Netherlands - a country which is renowned for a high density of planning, both in its cultivated landscapes and in its urban environments - and investigates in which ways computer aided techniques may be broadening the horizons of Dutch design practitioners and builders. An attempt is made to characterise recent developments within the architectural design community, with respect to the influence of (digital) design media on - stylistic - architectural developments and on the building methods of the nineties.
series AVOCAAD
last changed 2005/09/09 10:48

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_184671 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002