CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 520

_id cc51
authors Schnier, T. and Gero, J.S
year 1997
title Dominant and recessive genes in evolutionary systems applied to spatial reasoning
source A. Sattar (Ed.), Advanced Topics in Artificial Intelligence: 10th Australian Joint Conference on Artificial Intelligence AI97 Proceedings, Springer, Heidelberg, pp. 127-136
summary Learning genetic representation has been shown to be a useful tool in evolutionary computation. It can reduce the time required to find solutions and it allows the search process to be biased towards more desirable solutions. Learn-ing genetic representation involves the bottom-up creation of evolved genes from either original (basic) genes or from other evolved genes and the introduction of those into the population. The evolved genes effectively protect combinations of genes that have been found useful from being disturbed by the genetic operations (cross-over, mutation). However, this protection can rapidly lead to situations where evolved genes in-terlock in such a way that few or no genetic operations are possible on some genotypes. To prevent the interlocking previous implementations only allow the creation of evolved genes from genes that are direct neighbours on the genotype and therefore form continuous blocks. In this paper it is shown that the notion of dominant and recessive genes can be used to remove this limitation. Using more than one gene at a single location makes it possible to construct genetic operations that can separate interlocking evolved genes. This allows the use of non-continuous evolved genes with only minimal violations of the protection of evolved genes from those operations. As an example, this paper shows how evolved genes with dominant and re-cessive genes can be used to learn features from a set of Mondrian paintings. The representation can then be used to create new designs that contain features of the examples. The Mondrian paintings can be coded as a tree, where every node represents a rectangle division, with values for direction, position, line-width and colour. The modified evolutionary operations allow the system to cre-ate non-continuous evolved genes, for example associate two divisions with thin lines, without specifying other values. Analysis of the behaviour of the system shows that about one in ten genes is a dominant/recessive gene pair. This shows that while dominant and recessive genes are important to allow the use of non-continuous evolved genes, they do not occur often enough to seriously violate the protection of evolved genes from genetic operations.
keywords Evolutionary Systems, Genetic Representations
series other
email
last changed 2003/04/06 07:24

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id ddssup9619
id ddssup9619
authors Tisma, Alexandra
year 1996
title Multimedia Training "Designing Randstad"
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The project multimedia training "Designing Randstad" (MTDR) is an experimental attempt to introduce multimedia in education at the Faculty of Architecture in Delft. It intends to develope teachware which will learn the students the basics of Geographic Informational Systems (GIS) implementation in land use evaluation appropriate for physical planning purposes. Interaction between students and the system will enable students to learn about GIS, to design a model of the spatial development of Randstad area and to evaluate their own designs, to produce immediate graphic visualisation of the evaluation and to compare it with the evaluations of the fellow students. The project will be applied in the first year curriculum, in the course "Region" of the Department of Urban planning of the Faculty of Architecture, in the first half of the year 1997.
series DDSS
last changed 2003/08/07 16:36

_id 6112
authors Daru, Roel and Snijder, H.P.S.
year 1997
title GACAAD or AVOCAAD? CAAD and Genetic Algorithms for an Evolutionary Design Paradigm
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 145-161
summary One of the dominant paradigms in architecture is about its creation: it is done by human designers supported by tools like sketching, drawing or modelling and evaluation tools. The Darwinistic paradigm demands a paradigmatic switch from drawing, modelling and evaluation to the breeding of forms with a much more integrated generation and selecting process embedded in the computer machinery. This means a paradigm switch from a designer as the performer of (sketch, draw or modelling) work to a machine driven creation and selection process of forms with the designer as the supervisor, fully entitled to steer the process in some preferred directions. The designer creates by establishing the evolutionary rules and making choices among the architectural creatures emerging in rapid fire modethrough the synthesis performed by the machine. Natural selection is a Metaphor: in fact the designer plays Nature (or God). The creatures allowed to flourish are not adequate according to laws of Nature, but to the judgement of the designer (or to the designing team).
series AVOCAAD
last changed 2005/09/09 10:48

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id 1fb3
authors Akin, O., Cumming, M., Shealey, M. and Tuncer, B.
year 1997
title An electronic design assistance tool for case-based representation of designs
source Automation in Construction 6 (4) (1997) pp. 265-274
summary In precedent based design, solutions to problems are developed by drawing from an understanding of landmark designs. Many of the key design operations in this mode are similar to the functionalities present in case-based reasoning systems: case matching, case adapting, and case representation. It is clear that a rich case-base, encoding all major product types in a design domain would be the centerpiece of such an approach. EDAT (Electronic Design Assistance Tool) is intended to assist in precedent based design in the studio with the potential of expansion into the office setting. EDAT has been designed using object oriented system development methods. EDAT was used in a design studio at Carnegie Mellon University, during Spring 1996.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4e1c
authors Berdinski, D.
year 1997
title Combining different kinds of perspective images in architectural practice.
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary This paper is about combining photo-, video-, endoscope captured images with handmade or computer generated ones. Practically all optical systems are known to produce more or less curved perspective (spherical or cylindrical) which depends of angle-of-view, and a computer as a rule (as handmade) constructs linear perspective images. To combine them on any media correctly, an operator has to be professional painter or designer, because there is no mathematically determined way to combine them. The author's-made demo-computer program is able to generate spherical perspective of simple spatial constructions. It allows to illustrate mathematically and visually the principles of optical curved perspective, laws of their combination with linear ones and helps to feel how to achieve the accordance with natural visual architectural images.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id debf
authors Bertol, D.
year 1997
title Designing Digital Space - An Architect's Guide to Virtual Reality
source John Wiley & Sons, New York
summary The first in-depth book on virtual reality (VR) aimed specifically at architecture and design professionals, Designing Digital Space steers you skillfully through the learning curve of this exciting new technology. Beginning with a historical overview of the evolution of architectural representations, this unique resource explains what VR is, how it is being applied today, and how it promises to revolutionize not only the design process, but the form and function of the built environment itself. Vividly illustrating how VR fits alongside traditional methods of architectural representation, this comprehensive guide prepares you to make optimum practical use of this powerful interactive tool, and embrace the new role of the architect in a virtually designed world. Offers in-depth coverage of the virtual universe-data representation and information management, static and dynamic worlds, tracking and visual display systems, control devices, and more. Examines a wide range of current VR architectural applications, from walkthroughs, simulations, and evaluations to reconstructions and networked environments Includes insightful essays by leading VR developers covering some of today's most innovative projects Integrates VR into the historical framework of architectural development, with detailed sections on the past, present, and future Features a dazzling array of virtual world images and sequential displays Explores the potential impact of digital architecture on the built environment of the future
series other
last changed 2003/04/23 15:14

_id 35a1
authors Caneparo, L.
year 1997
title Shared Information System for Urban and Architectural Design
source Coyne, R. Ramscar, M. Lee, J. and Zreik, K. (eds.) Design and the net. Proceedings of the Sixth International EuropIA Conference, Europia Productions, Paris, pp. 39-52
summary This paper briefly describes the implementation of an Internet-intranet information system applied to a large-scale project. The large-scale project is centered on the urban area around the Porta Susa railway station in Turin, Italy. The information system integrates the communicative tools used to facilitate and improve the collaboration between the different actors working on the project and the distributed environment used to elaborate the information across a wide area network. The main factors considered are those which exploit the potentialities of computers and networks for interaction and communication. One result is the possibility of interacting dynamically with the information, re-elaborating and distributing it in progress. The information systems opens different ways of collaboration between the project employees, and extends the participation in the project to the citizens.
series other
email
last changed 2003/04/23 15:14

_id b656
authors Chase, S.C.
year 1997
title Logic based design modeling with shape algebras
source Automation in Construction 6 (4) (1997) pp. 311-322
summary A new method of describing designs by combining the paradigms of shape algebras and predicate logic representations is presented. Representing shapes and spatial relations in logic provides a natural, intuitive method of developing complete computer systems for reasoning about designs. The advantages of shape algebra formalisms over more traditional representations of geometric objects are discussed. The method employed involves the definition of a large set of high level design relations from a small set of simple structures and spatial relations. Examples in architecture and geographic information systems are illustrated.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 2698
authors Chien, Sheng Fen and Flemming, Ulrich
year 1997
title Information Navigation in Generative Design Systems
doi https://doi.org/10.52842/conf.caadria.1997.355
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 355-365
summary Generative design systems take an active part in the generation of computational design models. They make it easier for designers to explore conceptual alternatives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease and low cognitive loads. We present an approach to support navigation in generative design systems. Our approach takes account of studies related to navigation in physical environments as well as information navigation in electronic media. Results of studies from the physical environment and electronic media reveal that 1) people exhibit similar cognitive behaviours (spatial cognition and the use of spatial knowledge) while navigating in physical and information spaces; and 2) the information space lacks legibility and imageability. The proposed information navigation model take these findings into account.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 2342
authors Chiu, Mao-Lin and Shih, Shen-Guan
year 1997
title Analogical Reasoning and Case Adaptation in Architectural Design: Computers Vs. Human Designers
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 787-800
summary This paper depicts the studies of the differences between human designers and computers in analogical reasoning and case adaptation. Four design experiments are undertaken to examine how designers conduct case-based design, apply dimensional and topological adaptation. The paper also examines the differences of case adaptation by novice and experienced designers, and between human judgement in case adaptation and the evaluation mechanism by providing similarity assessment. In conclusion, this study provides the comparative analysis from the above observation and implications on the development of case-based reasoning systems for designers.
keywords Case-based Reasoning, Analogical Reasoning, Case Adaptation, Computer-Aided Architectural Design
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4a30
authors Chiu, Mao-Lin
year 1997
title Analogical Reasoning in Architectural Design: Comparison of Human Designers and Computers in Case Adaptation
doi https://doi.org/10.52842/conf.caadria.1997.205
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 205-215
summary Design cases were considered as the design solution or condensed knowledge of design experience. In the analogical reasoning process, case adaptation is the fundamental task for solving the problem. This paper is aimed to study the difference between human designers and computers in case adaptation. Two design experiments are undertaken for examining how designers apply dimensional and topological adaptation, exploring the difference of case adaptation by novice and experienced designers, and examining the difference between human judgement in case adaptation and the evaluation mechanism by providing similarity assessment. In conclusion, this study provides the comparative analysis from the above observation and implications on the development of case-based reasoning systems for designers.
series CAADRIA
email
last changed 2022/06/07 07:56

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id 4278
authors Frazer, John
year 1997
title The Groningen Experiment
doi https://doi.org/10.52842/conf.caadria.1997.345
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 345-353
summary This paper first describes an experimental evolutionary and generative model for the city of Groningen in northern Holland and goes on to speculate on how such techniques could be broadened and applied to the possible global co-operative evolution of cities.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 2483
authors Gero, J.S. and Kazakov, V.
year 1997
title Learning and reusing information in space layout problems using genetic engineering
source Artificial Intelligence in Engineering 11(3):329-334
summary The paper describes the application of a genetic engineering based extension to genetic algorithms to the layout planning problem. We study the gene evolution which takes place when an algorithm of this type is running and demonstrate that in many cases it effectively leads to the partial decomposition of the layout problem by grouping some activit ies together and optimally placing these groups during the first stage of the computation. At a second stage it optimally places activities within these groups. We show that the algorithm finnds the solution faster than standard evolutionary methods and that evolved genes represent design features that can be re-used later in a range of similar problems.
keywords Genetic Engineering, Learning
series other
email
last changed 2001/09/08 12:04

_id e821
authors Hartkopf, V., Loftness, V., Mahdavi, A., Lee, S. and Shankavaram, J.
year 1997
title An integrated approach to design and engineering of intelligent buildings--The Intelligent Workplace at Carnegie Mellon University
source Automation in Construction 6 (5-6) (1997) pp. 401-415
summary In the past few years, there have been significant advances made in the design and engineering of "intelligent" workplaces, buildings that not only accommodate major advances in office technology but provide better physical and environmental settings for the occupants. This paper will briefly present recent approaches to the creation of innovative environments for the advanced workplace. The architectural and engineering advances demonstrated in Japan, Germany, North America, the United Kingdom, and France can be summarized in four major system categories: (1) enclosure innovations including approaches to load balancing, natural ventilation, and daylighting; (2) heating, ventilation and air-conditioning (HVAC) system innovations including approaches to local control and improved environmental contact; (3) data/voice/power "connectivity" innovations; and (4) interior system innovations, including approaches to workstation and workgroup design for improved spatial, thermal, acoustic, visual, and air quality. In-depth international field studies of over 20 intelligent office buildings have been carried out by a multidisciplinary expert team of the Advanced Building Systems Integration Consortium (ABSIC) based at Carnegie Mellon University. ABSIC is a university-industry-government partnership focused on the definition and development of the advanced workplace. The ABSIC field team evaluated the component and integrated system innovations for their multidimensional performance qualities, through expert analysis, occupancy assessments, and field diagnostics. Based on the results of the case studies and building on the most recent technological advances, the ABSIC team developed the concepts for the Intelligent Workplace, a 7000 square foot living laboratory of office environments and innovations. This project is now under construction at Carnegie Mellon University and its features are discussed in the second section of this paper.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 5c74
authors HCIL
year 1997
title Spatial Perception in Perspective Displays
source Report Human-Computer Interaction Lab, Virginia
summary Increasingly, computer displays are being used as the interface "window" between complex systems and their users. In addition, it is becoming more common to see computer interfaces represented by spatial metaphors, allowing users to apply their vast prior knowledge and experience in dealing with the three-dimensional (3D) world (Wickens, 1992). Desktop VR or window on a world (WoW), as it is sometimes called, uses a conventional computer monitor to display the virtual environment (VE). The 3D display applies perspective geometry to provide the illusion of 3D space.
series report
last changed 2003/04/23 15:50

_id a5c7
authors Hovestadt, Ludger and Hovestadt, Volkmar
year 1997
title ARMILLA5 - Supporting Design, Construction and Management of Complex Buildings
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 135-150
summary ARMILLA5 is a generic computer aided design system, which supports the cooperative design of complex buildings (such as labs, offices or schools) over multiple levels of abstraction. It follows the metaphor of a virtual building site. The designers and engineers meet at a spatial location on the Internet and prepare the building construction by simulating the building site. This article describes the three essential components of the ARMILLA5-model: the geometric model which describes the spatial and physical aspects of the building site, the semantic model which implements passive building components as objects and active building components as applets or applications, and the planning model, which organizes the work steps of the individual engineers and their cooperation. The model is described using different software prototypes written in Objective C, CAD systems and HTML/JAVA.
keywords Dynamic Buildings, CAAD, CSCW, VRML, Case-based Reasoning, Facility Management, Augmented Reality
series CAAD Futures
email
last changed 1999/04/06 09:19

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_600826 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002