CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 518

_id ed09
authors Chang, Teng Wen and Woodbury, Robert F.
year 1997
title Efficient Design Spaces of Non-Manifold Solids
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 335-344
doi https://doi.org/10.52842/conf.caadria.1997.335
summary One widely accepted metaphor in design research is search or, equivalently, exploration which likens design to intelligent movement through a possibly infinite space of alternatives. In this metaphor, designers search design spaces, explore possibilities, discover new designs, and recall and adapt existing designs. We give the name design space explorers to computer programs that support exploration. This paper describes an efficient representation of states comprising three-dimensional non-manifold solid models and of design spaces made from such states.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 848a
authors Caneparo, Luca
year 1997
title Shared Virtual Reality for Architectural Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 431-442
summary The paper presents the implementation of a system of Shared Virtual Reality (SVR) in Internet applied to a large- scale project. The applications of SVR to architectural and urban design are presented in the context of a real project, the new railway junction of Porta Susa and the surrounding urban area in the city centre of Turin, Italy. SVR differs from Virtual Reality in that the experience of virtual spaces is no longer individual, but rather shared across the net with other users simultaneously connected. SVR offers an effective approach to Computer Supported Collaborative Work, because it integrates both the communicative tools to improve collaboration and the distributed environment to elaborate information across the networks.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 2698
authors Chien, Sheng Fen and Flemming, Ulrich
year 1997
title Information Navigation in Generative Design Systems
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 355-365
doi https://doi.org/10.52842/conf.caadria.1997.355
summary Generative design systems take an active part in the generation of computational design models. They make it easier for designers to explore conceptual alternatives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease and low cognitive loads. We present an approach to support navigation in generative design systems. Our approach takes account of studies related to navigation in physical environments as well as information navigation in electronic media. Results of studies from the physical environment and electronic media reveal that 1) people exhibit similar cognitive behaviours (spatial cognition and the use of spatial knowledge) while navigating in physical and information spaces; and 2) the information space lacks legibility and imageability. The proposed information navigation model take these findings into account.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 8b35
authors Maher, M.L., Simoff, S.J. and Mitchell, J.
year 1997
title Formalising building requirements using an Activity/Space Model
source Automation in Construction 6 (2) (1997) pp. 77-95
summary The specification of the spatial requirements for a building is the basis for the architectural design of the building. The specification usually takes the form of an extensive text-based document, a briefing database for large projects, or informal discussion between the architect and the client for a small project. The specification of a building is still a hand-crafted presentation of information that is neither carried forward to the next stage of the life cycle of the building, nor formalised so that it can be effectively used for another project. This paper presents a model, specifically developed to capture the idiosyncrasies of specifying buildings, that has the potential to provide the basis for specifying buildings more generally and could provide the basis for facilitating the generation of new designs or the reuse of existing designs. The model makes explicit the representation of activities, spaces and their relationships. The continued development of the Activity/Space (A/S) Model not only provides a formal representation of requirements, but could provide a standard for product modelling of buildings.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id c557
authors Fuchs, W. and Martinico, A.
year 1997
title The V.C.net--A digital study in architecture
source Automation in Construction 6 (4) (1997) pp. 335-339
summary The V.C.net project is an Internet-based educational and communication tool for the architectural community. Its goal is to encourage students from architecture programs across the country and around the world to examine problems and collaborate in the exploration of ideas through the World Wide Web. The central concept of the project involves the creation of a simulated, vital urban environment constructed from various forms of digital data. This `virtual city' will be comprised of projects executed by students of architecture and urban design in US and abroad. Projects will be proposed for specific sites and will reflect real-world questions as they are mirrored in the virtual world. The city exists as a heuristic tool and is not intended as a copy of any existing human habitat. The ultimate goal of the project is to create a dynamic platform to study the interrelationship of various forces effecting urban development: architecture, planning, civil engineering, economics, social sciences, etc. The project originates at the School of Architecture of the University of Detroit Mercy and is intended to be truly interdisciplinary.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
doi https://doi.org/10.52842/conf.acadia.2018.226
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id 6707
authors Jakimowicz, A., Barrallo, J. and Guedes, E.M.
year 1997
title Spatial Computer Abstraction: From Intuition to Genetic Algorithms
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 917-926
summary Many of the emblematic buildings constructed at present shows many formal and technological innovations that have not been satisfactorily resolved by the existing CAAD software. Frank 0. Gehry's Guggenheim Museum in Bilbao is a good example of architecture whose shapes and design are very advanced from the concepts and tools used by CAAD. The search for new creative resources, from the educational and professional point of view, must be a priority. This will be the only way to get that CAAD contributes essentially in the process of architectural innovation, instead of merely being a reproduction tool. From this viewpoint the computer exploration of the three dimensional form is presented in here. The concept of abstract art, that has been successfully applied to painting and sculpture in this century is used as a way to experiment, design and create architecture. This paper juxtaposes three approaches, three different ways of understanding the abstract character, with the purpose to create new objects and environments, which are exclusively characteristic for computer space. This juxtaposition shows how creative and innovative activities in the field of CAAD can be developed using different intellectual bases: intuition, mathematical formulas and genetic algorithms.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 6cb4
authors Leupen, B., Grafe, C., Körnig, N., Lampe, M. and De Zeeuw, P.
year 1997
title Design and Analysis
source New York: Van Nostrand Reinhold
summary Design and Analysis by Bernard Leupen, Christoph Grafe, Nicola Körnig, Marc Lampe, and Peter de Zeeuw Design and Analysis is an insightful, interdisciplinary exploration of the diversity of analytic methods used by architects, designers, urban planners, and landscape architects to understand the structure and principles of the built environment. Developed by a team headed by Bernard Leupen at Delft University of Technology, The Netherlands, Design and Analysis defies borders of history, geography, and discipline, tracing the evolution of design principles from ancient Greece to the 20th century. "Only methodical analysis gives us an insight into the design process," states architect Bernard Tschumi. Using historical examples from architecture, urban design, and landscape architecture, Design and Analysis defines an ordered system that enables the design student or professional to identify the factors that influence designers' decisions, and shows how to relate them to the finished project. Design and Analysis is organized into six chapters that correspond to these factors: order and composition, functionality, structure, typology, context, and analytical techniques. The authors introduce the analytical drawing as a time-tested means to obtaining insight into the design process. Over 100 line drawings are featured in all. Using contemporary architectural examples to teach ancient design principles, Design and Analysis is more than just an introduction to analytical methods. The authors give an outline of space design as a whole, from individual buildings to urban and landscape ensembles. Though primarily intended for design students to help them appreciate many of the issues that they will face as professionals, Design and Analysis's broad, easy-to-read approach makes it an invaluable handbook for designers of all disciplines.
series other
last changed 2003/04/23 15:14

_id ca34
authors Mine, Mark R .
year 1997
title ISAAC: a meta-CAD system for virtual environments
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 547-553
summary This paper presents a description of ISAAC; the Immersive Simulation Animation And Construction program designed and built at the University of North Carolina atChapel Hill (UNC-CH). ISAAC is a scene composition application used for the interactive construction of virtual worlds. In ISAAC you work directly in a virtualenvironment; you position, orient and scale objects using direct and indirect manipulation techniques. ISAAC stores object configurations in ASCII files that it uses torecreate scenes at a later date for further manipulation and interactive exploration. ISAAC is not a modeling program; you create worlds by manipulating pre-generatedthree-dimensional models (which can come from sources such as computer-aided design programs or three-dimensional scanning devices). ISAAC was designed toovercome some of the limitations of working in a virtual environment and to take advantage of the natural and intuitive forms of interaction available in a virtual world.
keywords Immersive Design, Object Manipulation, Virtual Environment, Interaction Techniques
series journal paper
last changed 2003/05/15 21:33

_id 4925
authors Poon, J. and Maher, M.L.
year 1997
title Co-evolution in Design
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 439-448
doi https://doi.org/10.52842/conf.caadria.1997.439
summary A design process is traditionally viewed as a sequential process model from the formulation of the problem to the synthesis of solutions. Simon (1981) regards design as a state-space search where a problem leads to the solution. To be more practical, there are many versions of solution generated during design, where each current one is an improvement over the previous one. This kind of synthesis of solutions can be viewed as an evolutionary system over time. We propose to apply the metaphor of "exploration” to design, and further argue that evolution occurs in the problem space as well as in the solution space. Co-evolutionary design is introduced to remove the assumption of having a fixed goal (problem). The problem is allowed to change over time. Two algorithms for co-evolution are presented. Their characteristics and differences are highlighted. The paper moves on to review the design history of the Sydney Opera House and to show how observations from this real life example confirm our co-evolutionary model.
series CAADRIA
email
last changed 2022/06/07 08:00

_id 4b7c
authors Schumacher, Peter and Radford, Antony
year 1997
title Games in Virtual Blockland
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 277-286
doi https://doi.org/10.52842/conf.caadria.1997.277
summary The paper discusses with an example the educational potential and limitations of students using a CAD system as an immersive environment for the rapid exploration of design compositions through play with a small vocabulary of blocks.
series CAADRIA
email
last changed 2022/06/07 07:57

_id c14d
authors Silva, Neander
year 1997
title Artificial Intelligence and 3D Modelling Exploration: An Integrated Digital Design Studio
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.l5p
summary

This paper describes a CAAD teaching strategy in which some Artificial Intelligence techniques are integrated with 3D modelling exploration. The main objective is to lead the students towards "repertoire" acquisition and creative exploration of design alternatives. This strategy is based on dialogue emulation, graphic precedent libraries, and 3D modelling as a medium of design study.

The course syllabus is developed in two parts: a first stage in which the students interact with an intelligent interface that emulates a dialogue. This interface produces advice composed of either precedents or possible new solutions. Textual descriptions of precedents are coupled with graphical illustrations and textual descriptions of possible new solutions are coupled with sets of 3D components. The second and final stage of the course is based on 3D modelling, not simply as a means of presentation, but as a design study medium. The students are then encouraged to get the system’s output from the first stage of the course and explore it graphically. This is done through an environment in which modelling in 3D is straightforward allowing the focus to be placed on design exploration rather than simply on design presentation. The students go back to the first stage for further advice depending on the results achieved in the second stage. This cycle is repeated until the design solution receives a satisfactory assessment.

keywords Education, Design Process, Interfaces, Neural Networks, 3D Modelling
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/silva/silva.htm
last changed 2022/06/07 07:50

_id ecaade2013_084
id ecaade2013_084
authors Stojanovic, Djordje and Cerovic, Milutin
year 2013
title Self-regulating Fields and Networks
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2013.1.633
wos WOS:000340635300066
summary This paper will explore the connection between two theoretical models, initially identified as the Field and the Network Conditions (Allen, 1997; Wigley, 2001) and material based studies in architectural design, conducted as a sequence of experiments. A number of prototypical models have been produced to test the practical and theoretical dimensions of the design approach which employs elastic material performance to achieve highly versatile spatial organization. One of the concrete outcomes of the exploration is the specific software extension produced by the authors of this paper. Its purpose is to enable designers to maintain an indirect control of complex spatial models based on the use of two parallel sets of algorithmic protocols which define: a. geometric logic and b. intrinsic material behavior.
keywords Elasticity; material performance; self-regulating systems; prototypical models; physics based simulation.
series eCAADe
email
last changed 2022/06/07 07:56

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id 730e
authors Af Klercker, Jonas
year 1997
title Implementation of IT and CAD - what can Architect schools do?
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 83-92
summary In Sweden representatives from the Construction industry have put forward a research and development program called: "IT-Bygg 2002 -Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry. A seminar was held with some of the most experienced researchers, developers and practitioners of CAD in construction in Sweden. The activities were recorded and annotated, analysed and put together afterwards; then presented to the participants to agree on. Co-operation is the key to get to the goals - IT and CAD are just the means to improve it. Co-operation in a phase of implementation is enough problematic without the technical difficulties in using computer programs created by the computer industry primarily for commercial reasons. The suggestion is that cooperation between software companies within Sweden will make a greater market to share than the sum of all individual efforts. In the short term, 2 - 5 years, implementation of CAD and IT will demand a large amount of educational efforts from all actors in the construction process. In the process of today the architect is looked upon as a natural coordinator of the design phase. In the integrated process the architect's methods and knowledge are central and must be spread to other categories of actors - what a challenge! At least in Sweden the number of researchers and educators in CAAD is easily counted. How do we make the most of it?
series AVOCAAD
last changed 2005/09/09 10:48

_id acadia03_022
id acadia03_022
authors Anders, Peter
year 2003
title Towards Comprehensive Space: A context for the programming/design of cybrids
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 161-171
doi https://doi.org/10.52842/conf.acadia.2003.161
summary Cybrids have been presented as mixed realities: spatial, architectural compositions comprised of physical and cyberspaces (Anders 1997). In order to create a rigorous approach to the design of architectural cybrids, this paper offers a model for programming their spaces. Other than accepting cyberspaces as part of architecture’s domain, this approach is not radical. Indeed, many parts of program development resemble those of conventional practice. However, the proposition that cyberspaces should be integrated with material structures requires that their relationship be developed from the outset of a project. Hence, this paper provides a method for their integration from the project’s earliest stages, the establishment of its program. This study for an actual project, the Planetary Collegium, describes a distributed campus comprising buildings and cyberspaces in various locales across the globe. The programming for these cybrids merges them within a comprehensive space consisting not only of the physical and cyberspaces, but also in the cognitive spaces of its designers and users.
series ACADIA
email
last changed 2022/06/07 07:54

_id a93b
authors Anders, Peter
year 1997
title Cybrids: Integrating Cognitive and Physical Space in Architecture
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 17-34
doi https://doi.org/10.52842/conf.acadia.1997.017
summary People regularly use non-physical, cognitive spaces to navigate and think. These spaces are important to architects in the design and planning of physical buildings. Cognitive spaces inform design - often underlying principles of architectural composition. They include zones of privacy, territory and the space of memory and visual thought. They let us to map our environment, model or plan projects, even imagine places like Heaven or Hell.

Cyberspace is an electronic extension of this cognitive space. Designers of virtual environments already know the power these spaces have on the imagination. Computers are no longer just tools for projecting buildings. They change the very substance of design. Cyberspace is itself a subject for design. With computers architects can design space both for physical and non-physical media. A conscious integration of cognitive and physical space in architecture can affect construction and maintenance costs, and the impact on natural and urban environments.

This paper is about the convergence of physical and electronic space and its potential effects on architecture. The first part of the paper will define cognitive space and its relationship to cyberspace. The second part will relate cyberspace to the production of architecture. Finally, a recent project done at the University of Michigan Graduate School of Architecture will illustrate the integration of physical and cyberspaces.

series ACADIA
email
last changed 2022/06/07 07:54

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_623341 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002