CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 519
Reformat results as: short short into frame detailed detailed into frame
Digital media have a significant and strategic role to play toward this end. Of particular value are representational strategies that help disentangle issues, clarify alternatives and evaluate consequences of very complex and often emotional issues of land use, planning and design. This paper reports on the ELEMENTS OF NEIGHBORHOOD, a prototype 'electronic notebook' (relational database) tool developed to bring design information and example 'to the table' of a public workshop. Elements are examples of the building blocks of neighborhood (open spaces, housing, commercial, industrial, civic and network land uses) derived from built examples, and illustrated with graphic, narrative and numeric representations relevant to planning, design, energy, environmental and economic performance. Quantitative data associated with the elements can be linked to Geographic Information based maps and spreadsheet based-evaluation models.
The projects presented here are of three types: (1.) The first project compares people's evaluation of several slightly modified virtual models of a space. (2.) The second project compares how people evaluate a foam core model of a space to how they evaluate a virtual representation of the same space (3.) The third project compares people's evaluation of a real space to that of a virtual representation of this space. //
The wide range of results presented provides one argument in support of using VR simulations to study spaces and how they are perceived. For example, results shows that a virtual window serves to alleviate perceived crowding and that added furniture serves to make a virtual room feel slightly larger and less constraining. However, problems did emerge with using virtual reality simulations to gain information about peoples' behavioral reactions to a space. Thus, not all circumstances under which VR representations are used creates valid results. Differences appear to be in the type of evaluations measured (e.g. dimensional versus behavioral). More research is needed to clarify this issue.
For this reason, and because not always is arranged the best possible documentation, we consider that the majority of vectorisations they exist in the market don’t plenty satisfied our needs as teaching staff of graphic expression and CAD, althoug we can always be using the same systems of projection or codified representations, it is imposed a lot of times to interpret acording the context the different signs and graphic registers used.
We know experimental applications that go beyond, they even arrive to generate a 3D model from a lifted hand draw that represents three orthogonal projections of it, but it isn’t less certain that its utility is restricted to fields very specialised and the option that we propose, there is not knowledge at least to us that it exist; commercially speaking.
Our porpose has been to develope a symple metedology of vectorisation but adapted to the special idiosyncrasy of the needs of an architecture student that with frequency for his formation requires to generate with CAD models 2D and 3D of architectural projects from the information contented in magazines, and with them create several formas analysis.
The most important difference in the matter to other systems is the interactivity of the procedure that let personify the exit file, even the wide diversity of graphic registers that it exist in the entrance, being the user only once has to identify and interpret the signs to detect, and then the process is realized automatically to any plant of the building or equivalent projection.
1.Import design from other CAD tools.
2.Assemble an architecture structure from a library of pre-built blocks and geometry primitives dynamically created by user.
3.Export the design interactively in VRML format back to the library for Internet browsing.
The geometry primitives include polygon, sphere, cone, cylinder and cube. The pre-built blocks consist of fundamental architecture models which have been categorized with architectural related style, physical properties and environmental attributes. Upon a user’s request, the tool or the composer, has the ability to communicate with the library which indeed is a back-end distributed client-server database engine. The user may specify any combination of properties and attributes in the composer which will instantly bring up all matching 3-dimensional objects through the database engine. The database is designed in relational model and comes from the work of another research group.
For more results click below: