CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 523
Reformat results as: short short into frame detailed detailed into frame
Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.
The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.
Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.
The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.
Pairs of participants were set a design problem and asked to solve it in face-to-face settings. The same problem was then tackled by participants in settings using two different modes of computer-supported communication: email and an electronic whiteboard. Protocols were collected and analyzed in terms of the constraints of each tool relative to the task and to each other. The GOMS methodology was used as a way to represent the collaborative design process in a way that yields information on both the productivity and performance of participants in each of the three experimental conditions. It also yielded information on the component elements of the design process, the basic cognitive building-blocks of design, thereby suggesting fundamentally new tools that might be created for interaction in virtual environments.
A further goal of the study was to explore the nature of task differences in relation to alternative platforms for communication. It was hypothesized that design processes involving significant negotiation would be less aided by computer support than straight forward design problems. The latter involve cooperative knowledge application by both participants and are therefore facilitated by information-rich forms of computer support. The former, on the other hand, requires conflict resolution and is inhibited by non face-to-face interaction. The results of this study point to the fact that the success of collaboration in virtual space is not just dependent on the nature of the tools but also on the specific nature of the collaborative task.
All three studios tested notions of representation, simulation and the design process in relation to a post-industrial world and its impact on how we design for it. The sites for two of these studios were in the city of Berlin, where the spearhead of the information age and a leftover of the industrial revolution overlap in an urban condition that is representative of our world after the cold war. The three studios describe a progressive shift in the use of information technology in the design process, from nearly pure image-driven simulation to a more low-tech, highly creative uses of everyday computing tools. Combined, all three cases describe an array of scenarios for content-supportive uses of digital media in a design studio. The first studio described here, from USC, utilized computer modeling and visualization to design a building for a site located within the former no-mans' land of the Berlin Wall. The second studio, from SCI-Arc, produced an urban design proposal for an area along the former Berlin Wall and included a pan-geographic design collaboration via Internet between SCI-Arc/Los Angeles and SCI-Arc/Switzerland. The third and last studio from Woodbury University participated in the 1997 ACSA/Dupont Laminated Glass Competition designing a consulate general for Germany and one for Hong Kong. They employed a hybrid digital/non-digital process extracting experiential representations from simple chipboard study models and then using that information to explore an "enhanced model" through digital imaging processes.
The end of the cold war was coincidental with the explosive popularization of information technology as a consumer product and is poised to have huge impact on how and what we design for our cities. Few places in world express this potential as does the city of Berlin. These three undergraduate design studios employed consumer-grade technology in an attempt to make a difference in how we design, incorporating discussions of historical change, ideological premise and what it means to be an architect in a world where image and content can become easily disconnected from one another.
For more results click below: