CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 519

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 34b8
authors Batie, D.L.
year 1997
title The incorporation of construction history in architectural history: the HISTCON interactive computer program
source Automation in Construction 6 (4) (1997) pp. 275-285
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id debf
authors Bertol, D.
year 1997
title Designing Digital Space - An Architect's Guide to Virtual Reality
source John Wiley & Sons, New York
summary The first in-depth book on virtual reality (VR) aimed specifically at architecture and design professionals, Designing Digital Space steers you skillfully through the learning curve of this exciting new technology. Beginning with a historical overview of the evolution of architectural representations, this unique resource explains what VR is, how it is being applied today, and how it promises to revolutionize not only the design process, but the form and function of the built environment itself. Vividly illustrating how VR fits alongside traditional methods of architectural representation, this comprehensive guide prepares you to make optimum practical use of this powerful interactive tool, and embrace the new role of the architect in a virtually designed world. Offers in-depth coverage of the virtual universe-data representation and information management, static and dynamic worlds, tracking and visual display systems, control devices, and more. Examines a wide range of current VR architectural applications, from walkthroughs, simulations, and evaluations to reconstructions and networked environments Includes insightful essays by leading VR developers covering some of today's most innovative projects Integrates VR into the historical framework of architectural development, with detailed sections on the past, present, and future Features a dazzling array of virtual world images and sequential displays Explores the potential impact of digital architecture on the built environment of the future
series other
last changed 2003/04/23 15:14

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 567d
authors Farrag, C., Pinna Braga, F. and Teixeira, P.
year 2000
title Investigação de Metodologia de Ensino de Informática Aplicada à Arquitetura (Research on the Methodology for Teaching Computer Applications in Architecture)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 347-349
summary Description of class research from 1997-2 to 2000-1 in “Applied Computing in Architecture” conducted in the sixth semester of the Architecture Program at Faculdade de Belas Artes de São Paulo. The study is intended to analyze, evaluate and discover new paradigms in the introduction/application of class methodologies of teaching the use of computer in the design process. Our intention is to verify the students natural understanding of the principles of 3D digital modeling by introducing new tools for defining space and form, using the computer as a communication/representation system, and not only as a mimetized production tool. The challenge was to find a natural syntony between the digital projectual process and the learning process. At the end of each semester we evaluated the results and redirected the class proposals.
series SIGRADI
email
last changed 2016/03/10 09:51

_id dba1
authors Hirschberg, Urs and Wenz, Florian
year 2000
title Phase(x) - memetic engineering for architecture
source Automation in Construction 9 (4) (2000) pp. 387-392
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/1997. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This set-up allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived. While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes2 that developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, which is not limited to teaching CAAD. Since this paper was first published in 1997, we have continued to explore the issues described here in various projects3 together with a growing number of other interested institutions worldwide. While leaving the paper essentially in its original form, we added a section at the end, in which we outline some of these recent developments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cc87
authors Johnson, Scott
year 1997
title What's in a Representation, Why Do We Care, and What Does It Mean? Examining Evidence from Psychology
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 5-15
doi https://doi.org/10.52842/conf.acadia.1997.005
summary This paper examines psychological evidence on the nature and role of representations in cognition. Both internal (mental) and external (physical or digital) representations are considered. It is discovered that both types of representation are deeply linked to thought processes. They are linked to learning, the ability to use existing knowledge, and problem solving strategies. The links between representations, thought processes, and behavior are so deep that even eye movements are partly governed by representations. Choice of representations can affect limited cognitive resources like attention and short-term memory by forcing a person to try to utilize poorly organized information or perform "translations" from one representation to another. The implications of this evidence are discussed. Based on these findings, a set of guidelines is presented, for digital representations which minimize drain of cognitive resources. These guidelines describe what sorts of characteristics and behaviors a representation should exhibit, and what sorts of information it should contain in order to accommodate and facilitate design. Current attempts to implement such representations are discussed.

series ACADIA
email
last changed 2022/06/07 07:52

_id d910
authors Kieferle, Joachim B. and Herzberger, Erwin
year 2002
title The “Digital year for Architects” Experiences with an integrated teaching concept
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 88-95
doi https://doi.org/10.52842/conf.ecaade.2002.088
summary The “digital year for architects” is an integrated course for graduate architecture students, that has been held since 1997 at Stuttgart University. Its concept is to link together traditional design teaching and working with computers. Three seminars and one design project are the framework of the course, in which the students are taught in design of e.g. image and space composition, typography, video, using virtual reality, theoretical basics for the final design project like information management or working environments, approximately a dozen software packages and finally a visionary design project. It has shown that the advantage of an integrated course compared to separate courses is the more intensive dealing with the project as well as achieving better skills when learning the new media. Not only because the project topics are different from usual architecture and more abstract, the main effect is to widen the students way of thinking and designing.
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac20031105
id ijac20031105
authors Kieferle, Joachim B.; Herzberger, Erwin
year 2003
title The "Digital year for Architects" - Experiences with an Integrated Teaching Concept
source International Journal of Architectural Computing vol. 1 - no. 1
summary The "digital year for architects" is an integrated course for graduate architecture students that has been running since 1997, at Stuttgart University. Its concept is to link together traditional design teaching and working with computers. Three seminar classes and one design project form the framework of the course. In it the students are taught the design of, for example, image and space composition, typography, video, and using virtual reality. Additionally we cover theoretical basics for the final design project, such as information management or working environments. The course takes in approximately a dozen software packages and ends with a visionary design project. The products have shown the advantage of an integrated course compared to separate courses. The course proves to be more intensive in dealing with the project as well as achieving better skills when learning the associated new digital media. An important feature is that because the project topics are different from conventional architectural schemes, and tend to be more abstract, a key effect is to widen the students' way of thinking about designing.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id 63bb
authors Kokosalakis, J., Brown, G. and Moorhouse, J.
year 1997
title Incremental Reflective Learning and Innovative Practice in Electronic Design Media
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.u1q
summary This paper discusses the impact of a continuously developing CAAD learning strategy, describing in detail a few of these principles, and considering their dynamic impact through deeper more lasting learning, feeding a substantial intensification in the application of Architectural Designing with Computers, changing design methods with interesting analytical and creative results.Aspects of the CAAD teaching discussed include extended collaboration between CAAD and design tutors in defining learning outcomes and tutoring the students’ application of CAAD to design projects, inclusion of CAAD within traditional interim reviews and feedback for design projects and bringing emphasis on conceptual principles, structuring the model and simple programming into earlier stages of the teaching programme and a simple excursion into programming. Studio project examples indicate the interplay between teaching, learning and achievement. Some evidence is explored in greater detail. from the "Interstitial Layers" project utilising the appropriateness of CAAD to store and switch the visibility of spatial data in endless permutations and extensive combinations for mapping, analysing and strategically projecting patterns of city centre activities, fabric and space. Students’ demonstrate a dynamic command of CAAD: as a vehicle for conceptual design, a device to analytically review, criticise and modify the design, as a means to explain design ideas to tutors and to develop and detail final building designs. Reciprocal valuing of quality CAAD achievement between architecture students and staff is seen to be contributing to involvement and motivation, reinforcing striving for equality of achievement. Reference to a further strand of the new methodology considers the impact of tutoring based in researcher findings from video case study precedents of architects practising creative design through use of computers, on a more open, effective development of the architecture students’ own designing processes, culminating in interesting design work.
keywords Incremental Learning, Understanding, CAAD-Design Approaches, Retention, Feedback, Review, Urban Spatial Forms, Spatial Analysis, "Interstitial Layers", Patterns, Conceptual Electronic Designing, Creative Innovation, Equality and Sharing
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/kokosa/jmup01.htm
last changed 2022/06/07 07:50

_id 01e7
authors Kvan, Thomas
year 1997
title Studio Teaching Without Meeting: Pedagogical Aspects of a Virtual Design Studio
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 163-177
doi https://doi.org/10.52842/conf.caadria.1997.163
summary Virtual Design Studios are proliferating. Schools of architecture are eagerly experimenting with the technology of the Internet. Discussions about Virtual Design Studios typically focus on technological issues – which hardware, what software – or environments – MOOs, ftp. Recently, some papers have been written on the perceptual issues and the social aspects of remote design collaborations, thus contributing to some of the contextual issues within which virtual studios are conducted. This paper contributes another perspective, presenting a review of the pedagogical issues raised in a VDS. It examines the difficulties and opportunities which present themselves in teaching a Virtual Design Studio. Based on reviews of problem-based learning and examinations of architectural studio learning, including several experiences in conducting virtual studios, the author considers the particularities of conducting a studio in the virtual world, the motivations for these studios, the experiences of students and the results obtained. From this background, the author identifies benefits and drawbacks of teaching in this manner, leading then to guidelines for framing and conducting effective and successful Virtual Design Studios and raises issues for further discussion.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 25a2
authors MacCallum, C. and Hanna, R.
year 1997
title DEFLECT: A Computer Aided Learning Package for Teaching Structural Design - Phase Two
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.f6j
summary This paper reports on Phase Two of a SHEFC funded project jointly carried out by the Department of Civil, Structural and Environmental Engineering, University of Paisley, the Mackintosh School of Architecture, and Lamp Software. The project aims to build a computer-assisted learning package on the response of structures to load. The software will be used as an interactive teaching tool for both architectural and engineering students.

The package has four levels: Beginners (Level 1), Intermediate (Level 2) and Advanced (Levels 3 and 4). The first two levels have been completed after continuous feedback from both institutions. Level 1 is geared towards architectural and engineering students to help them understand structural behaviour of building components, such as deflection. Level 2 is a graphical editor that enables students to draw precisely the structure of their designs, investigate the deflection of structural members and identify areas of tension and compression. Levels 3 and 4 are a design tool which is aimed at architectural and civil engineering students where they can design and analyse realistic structures by choosing structural members from a library, and specify materials and multiple loads.

Phase One of DEFLECT was presented in the 14th ECAADE conference , which was held at the University of Lund, Sweden. In Phase Two, the range of structural examples was expanded to include typological classics. This was accompanied by additional teaching and learning material. The package was enlarged to include bending moment and shear force diagrams, tapered and curved members, and additional materials such as glass.

series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/maccull/maccull.htm
last changed 2022/06/07 07:50

_id a9f5
authors Maher, Mary Lou
year 1997
title Sam: A Multimedia Case Library of Structural Designs
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 5-13
doi https://doi.org/10.52842/conf.caadria.1997.005
summary Recent developments in multimedia and case-based reasoning provide the basis for developing teaching aids for architecture students that present technology and science learning materials as design cases. Case-based reasoning tools can provide assistance in the identification of a relevant design case and the modification of a case for the current design problem. We have developed multimedia library of buildings to support a case-based reasoning approach to teaching structural design. The design cases are linked through a network of concepts that follow a specific learning area, for example, the structural design of tall buildings is linked through the concept of lateral load resistance. The multimedia environment provides an active learning tool that the student uses to generate design solutions.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 897a
authors Maver, Tom
year 1997
title A Number is Worth a Thousand Pictures
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.a5q
summary The CAAD community is lucky indeed to be involved in a field of teaching and learning which is evolving so fast, which contributes so much to the theory and practice of that most complex and interesting human activity - design, and which clearly excites such a high level of interest and commitment from our students.

There is much upon which the CAAD community can congratulate itself; each year the proceedings of E C A A D E, A C A D I A, C A A D Futures and now C A A D R I A expose an increasingly rich diversity of applications of the information technologies to architectural education. The purpose of this paper, however, is to highlight the relative paucity of applications which lie at the very centre of design education - i.e. the "cause and effect" of how design decisions impact upon the quality of the building.

keywords Function, Performance, Integrated Appraisal, Design Decision Support
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/maver/maver.htm
last changed 2022/06/07 07:50

_id 873a
authors Ng, Edward
year 1997
title An Evaluative Approach to Architectural Visualization
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 449-463
doi https://doi.org/10.52842/conf.caadria.1997.449
summary In the forthcoming globalization and virtual almost everything, we are indeed reliving a moment of history when, at the turn of the century, machines replace craftsman in mass-producing goods quicker, cheaper, ‘better’ and faster for the mass market regardless of the appropriateness in using the machine. So much so that the recent proliferation of computer graphics has reached a stage where many are questioning their validity and usefulness in the advancement of architectural discourse. This paper argues that the pedagogy of the use of the new tools should be effective communication in vision and in representation. In short, saying what you do and doing what you say, no more and no less, or to be ‘true’ and ‘honest’. The paper tries to provide a hypothetical framework whereby the rationale of drawing could be more systematically understood and criticised, and it reports ways the framework is introduced in the teaching of design studio. The focus of the experimental studio (Active Studio 1.6 beta) is to enable the substantiation of ideas and feelings through a critical manipulation of medium and techniques. The results are narratives whereby the expression of intention as well as the drawings are both on trial.
series CAADRIA
last changed 2022/06/07 07:58

_id ab09
authors Qaqish, Ra’ed and Hanna, Raid
year 1997
title The Impact of CAL Strategies on CAD
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 475-489
doi https://doi.org/10.52842/conf.caadria.1997.475
summary This paper reports on a two fold study, which examines the impact of CAL on CAD and architectural education, and evaluates the overall effectiveness and efficiency of CAD teaching and strategies in the curriculum of architecture. The study also examined the need for a framework within which the creation of a module for applying CAL in CAD to support the curriculum of architecture can be structured and assessed. The main concern of the study was to explore the range and balance of computer assisted activities in the design studio, and the interpretation of the various roles of the CAD tutor and his/her involvement in delivering these activities. In delivering these activities two criteria, namely: teaching methods and CAD integration (which are interchangeable and yet play different roles), can have a distinct effect on the implementation of CAL in the design studio. The case study evaluated and investigated the CAL the AEC course as part of the 3rd year design studio at Mackintosh School of Architecture, to determine to what extent the AEC learning events were effective in advocating new strategies in CAD. The methods of this investigation consisted of classroom observations and administrating questionnaires. Variables such as the group and gender differences/participation, the tutor’s confidence, level of administration and strategies to help with technical problems and motivations, also the task-related activities, tangibility of the learning materials, and the minutes of lesson have been examined. The global rating of the CAL events in CAD lessons, the CAL organisation and sequence, the level of students’ confidence, the rate of students’ interest, the mode of classroom, the level of learner performance and the relationship between CAL and the overall curriculum have also been empirically examined and their interdependent relationships explored. The findings of this study may help in establishing future directions in adopting some form of effective CAL strategies in CAD. The study also serves as an evaluation tool for computing teaching in the design studio. Furthermore, the checklist used in this case study may also be used in evaluating the different courses in CAD in the curriculum of architectural schools.
series CAADRIA
last changed 2022/06/07 08:00

_id 6e46
authors Wenz, Florian and Hirschberg, Urs
year 1997
title Phase(x) - Memetic Engineering for ArchitectureArchitecture
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.b1e
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/97. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This setup allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived.

While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes hat developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, that is not limited to teaching CAAD.

keywords memetic process, collaborative creative work, collective authorship, caad education
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/wenz/wenz.htm
last changed 2022/06/07 07:50

_id e22d
authors Emprin, G., Girotto, E., Gotta, A., Livi, T. and Luigia, M.Priore
year 1997
title Virtual Studio of Design and Technology on Internet (II): Student's experience
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.u9k
summary For about a year the members of our group have been working on their degree thesis focused on the project of the new intermodal node of Porta Susa in Turin. The theses are concerned with complex urban and architectural problems in the light of the innovations brought by computers and networks. The experience, up to now, makes us conscious that telematics is, and will be, more and more able to offer new tools and different methodologies to approach architectural design. Collaboration across computer networks has improved our design experience with systematic contributions from various skills and methodologies.

The presentation of our still on-going didactic experience has been subdivided into phases, strictly interrelated The first one, almost over, is concerned with the analysis of the area and the representation of the collected data.

keywords CAAD, Teaching of Architectural Design, Shared Virtual Reality, Virtual Design Studio
series eCAADe
more http://info.tuwien.ac.at/ecaade/proc/lvi_i&ii/gotta.html
last changed 2022/06/07 07:50

_id 4062
authors Flanagan Robert and Shannon, Kelly
year 1998
title Digital Studio Confronts Tradition
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 65-71
doi https://doi.org/10.52842/conf.ecaade.1998.065
summary This is a record of a collaborative teaching effort of two architect/educators, each contributing theoretical components to the educational process necessary for the development of an urban housing strategy vis à vis an integrated digital/judgment effort. Twenty graduate architecture students were involved in this ‘computer design studio’. The focus of the studio was the 1997 Otis Elevator Housing Design Competition. A prerequisite introductory computer class was required for participation in this studio. Two distinct analysis and design methodologies were introduced; one concentrating on the formal tectonic aspects of architecture and the other highlighting the multiplicity, and often competing, forces shaping the built reality. The summary offered at the conclusion of this document both supports and questions the direction of the class as a whole and further classifies the relative success and failures of the individual student initiatives. In some cases, the computer simply facilitated (and occasionally hindered) progress. In the most opportunistic examples, the computer undoubtedly changed both the process and the consequence of the design effort.  
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_665745 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002