CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 39

_id cc87
authors Johnson, Scott
year 1997
title What's in a Representation, Why Do We Care, and What Does It Mean? Examining Evidence from Psychology
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 5-15
doi https://doi.org/10.52842/conf.acadia.1997.005
summary This paper examines psychological evidence on the nature and role of representations in cognition. Both internal (mental) and external (physical or digital) representations are considered. It is discovered that both types of representation are deeply linked to thought processes. They are linked to learning, the ability to use existing knowledge, and problem solving strategies. The links between representations, thought processes, and behavior are so deep that even eye movements are partly governed by representations. Choice of representations can affect limited cognitive resources like attention and short-term memory by forcing a person to try to utilize poorly organized information or perform "translations" from one representation to another. The implications of this evidence are discussed. Based on these findings, a set of guidelines is presented, for digital representations which minimize drain of cognitive resources. These guidelines describe what sorts of characteristics and behaviors a representation should exhibit, and what sorts of information it should contain in order to accommodate and facilitate design. Current attempts to implement such representations are discussed.

series ACADIA
email
last changed 2022/06/07 07:52

_id d60a
authors Casti, J.C.
year 1997
title Would be Worlds: How simulation is changing the frontiers of science
source John Wiley & Sons, Inc., New York.
summary Five Golden Rules is caviar for the inquiring reader. Anyone who enjoyed solving math problems in high school will be able to follow the author's explanations, even if high school was a long time ago. There is joy here in watching the unfolding of these intricate and beautiful techniques. Casti's gift is to be able to let the nonmathematical reader share in his understanding of the beauty of a good theory.-Christian Science Monitor "[Five Golden Rules] ranges into exotic fields such as game theory (which played a role in the Cuban Missile Crisis) and topology (which explains how to turn a doughnut into a coffee cup, or vice versa). If you'd like to have fun while giving your brain a first-class workout, then check this book out."-San Francisco Examiner "Unlike many popularizations, [this book] is more than a tour d'horizon: it has the power to change the way you think. Merely knowing about the existence of some of these golden rules may spark new, interesting-maybe even revolutionary-ideas in your mind. And what more could you ask from a book?"-New Scientist "This book has meat! It is solid fare, food for thought . . . makes math less forbidding, and much more interesting."-Ben Bova, The Hartford Courant "This book turns math into beauty."-Colorado Daily "John Casti is one of the great science writers of the 1990s."-San Francisco Examiner In the ever-changing world of science, new instruments often lead to momentous discoveries that dramatically transform our understanding. Today, with the aid of a bold new instrument, scientists are embarking on a scientific revolution as profound as that inspired by Galileo's telescope. Out of the bits and bytes of computer memory, researchers are fashioning silicon surrogates of the real world-elaborate "artificial worlds"-that allow them to perform experiments that are too impractical, too costly, or, in some cases, too dangerous to do "in the flesh." From simulated tests of new drugs to models of the birth of planetary systems and galaxies to computerized petri dishes growing digital life forms, these laboratories of the future are the essential tools of a controversial new scientific method. This new method is founded not on direct observation and experiment but on the mapping of the universe from real space into cyberspace. There is a whole new science happening here-the science of simulation. The most exciting territory being mapped by artificial worlds is the exotic new frontier of "complex, adaptive systems." These systems involve living "agents" that continuously change their behavior in ways that make prediction and measurement by the old rules of science impossible-from environmental ecosystems to the system of a marketplace economy. Their exploration represents the horizon for discovery in the twenty-first century, and simulated worlds are charting the course. In Would-Be Worlds, acclaimed author John Casti takes readers on a fascinating excursion through a number of remarkable silicon microworlds and shows us how they are being used to formulate important new theories and to solve a host of practical problems. We visit Tierra, a "computerized terrarium" in which artificial life forms known as biomorphs grow and mutate, revealing new insights into natural selection and evolution. We play a game of Balance of Power, a simulation of the complex forces shaping geopolitics. And we take a drive through TRANSIMS, a model of the city of Albuquerque, New Mexico, to discover the root causes of events like traffic jams and accidents. Along the way, Casti probes the answers to a host of profound questions these "would-be worlds" raise about the new science of simulation. If we can create worlds inside our computers at will, how real can we say they are? Will they unlock the most intractable secrets of our universe? Or will they reveal instead only the laws of an alternate reality? How "real" do these models need to be? And how real can they be? The answers to these questions are likely to change the face of scientific research forever.
series other
last changed 2003/04/23 15:14

_id 7e69
authors Lea, R., Honda, Y, and Matsuda, K.
year 1997
title Virtual Society: Collaboration in 3D Spaces on the Internet
source Computer Supported Cooperative Work (CSCW) 6(2): 227-250; Jan 1997
summary The Virtual Society (VS) project is a long term research initiative that is investigating the evolution of the future electronicsociety. Our vision for this electronic society is a shared 3D virtual world where users, from homes and offices, canexplore, interact and work. Our first implementation of an infrastructure to support our investigation is known asCommunityPlace and has been developed to support large-scale shared 3D spaces on the Internet using the Virtual RealityModeling Language (VRML). Obviously, such an ambitious project cuts across many different domains. In this paper weoutline the goals of the Virtual Society project, discuss the architecture and implementation of CommunityPlace withparticular emphasis on Internet related technologies such as VRML and present our views on the role of VRML and theInternet to support large-scale shared 3D spaces.
keywords Distributed Virtual Environment; Internet; Collaboration; Consistency; VRML
series other
email
last changed 2002/07/07 16:01

_id 730e
authors Af Klercker, Jonas
year 1997
title Implementation of IT and CAD - what can Architect schools do?
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 83-92
summary In Sweden representatives from the Construction industry have put forward a research and development program called: "IT-Bygg 2002 -Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry. A seminar was held with some of the most experienced researchers, developers and practitioners of CAD in construction in Sweden. The activities were recorded and annotated, analysed and put together afterwards; then presented to the participants to agree on. Co-operation is the key to get to the goals - IT and CAD are just the means to improve it. Co-operation in a phase of implementation is enough problematic without the technical difficulties in using computer programs created by the computer industry primarily for commercial reasons. The suggestion is that cooperation between software companies within Sweden will make a greater market to share than the sum of all individual efforts. In the short term, 2 - 5 years, implementation of CAD and IT will demand a large amount of educational efforts from all actors in the construction process. In the process of today the architect is looked upon as a natural coordinator of the design phase. In the integrated process the architect's methods and knowledge are central and must be spread to other categories of actors - what a challenge! At least in Sweden the number of researchers and educators in CAAD is easily counted. How do we make the most of it?
series AVOCAAD
last changed 2005/09/09 10:48

_id 412e
authors Gross, M.D., Do, E. and McCall, R.J.
year 1997
title Collaboration and Coordination in Architectural Design: approaches to computer mediated team work
source TeamCAD 97, 17-23
summary In 1993 and 1994, instructors and students of architecture at several universities around the world* collaborated briefly on two "virtual design studio" projects. Using off-the-shelf technology of the time-email, CU-See-Me internet video, international conference calls, and exchange of CAD drawings, images, and Quicktime animations-this ambitious project explored the possibility of bringing together diverse members of an international design team together to collaborate on a short term (two week) project. Central to the "Virtual Design Studio" was a 'digital pinup board', an area where participating designers could post and view drawings and textual comments; video links and email exchange provided the media for direct communication media about designs. A report on the project [21] makes clear that the process was not without technical difficulties: a significant amount of communication concerned scheduling and coordinating file formats; disappointingly little was devoted to discussions of design issues. Although it's clear that many of the minor technical problems that inevitably plague a forward-looking effort like the Virtual Design Studio will be solved in the near term, the project also reveals the need for research on software and design practices to make computer mediated design collaboration realize its attractive promise.
series journal paper
email
last changed 2003/04/23 15:50

_id 060b
authors Af Klercker, J.
year 1997
title A National Strategy for CAAD and IT-Implementation in the Construction Industry the Construction Industry
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.o8u
summary The objective of this paper is to present a strategy for implementation of CAD and IT in the construction and building management#1 industry in Sweden. The interest is in how to make the best use of the limited resources in a small country or region, cooperating internationally and at the same time avoiding to be totally dominated by the great international actors in the market of information technology.

In Sweden representatives from the construction and building management industry have put forward a research and development program called: "IT-Bygg#2 2002 - Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry.

The presented strategy is based on a seminar with some of the most experienced researchers, developers and practitioners of CAD in Sweden. The activities were recorded and annotated, analyzed and put together afterwards.

The proposal in brief is that object oriented distributed CAD is to be used in the long perspective. It will need to be based on international standards such as STEP and it will take at least another 5 years to get established.

Meanwhile something temporary has to be used. Pragmatically a "de facto standard" on formats has to be accepted and implemented. To support new users of IT all software in use in the country will be analyzed, described and published for a national platform for IT-communication within the construction industry.

Finally the question is discussed "How can architect schools then contribute to IT being implemented within the housing sector at a regional or national level?" Some ideas are presented: Creating the good example, better support for the customer, sharing the holistic concept of the project with all actors, taking part in an integrated education process and international collaboration like AVOCAAD and ECAADE.

 

keywords CAAD, IT, Implementation, Education, Collaboration
series eCAADe
type normal paper
email
more http://info.tuwien.ac.at/ecaade/proc/afklerck/afklerck.htm
last changed 2022/06/07 07:50

_id 0c91
authors Asanowicz, Aleksander
year 1997
title Computer - Tool vs. Medium
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.b2e
summary We have arrived an important juncture in the history of computing in our profession: This history is long enough to reveal clear trends in the use of computing, but not long to institutionalize them. As computers peremate every area of architecture - from design and construction documents to project administration and site supervision - can “virtual practice” be far behind? In the old days, there were basically two ways of architects working. Under stress. Or under lots more stress. Over time, someone forwarded the radical motion that the job could be easier, you could actually get more work done. Architects still have been looking for ways to produce more work in less time. They need a more productive work environment. The ideal environment would integrate man and machine (computer) in total harmony. As more and more architects and firms invest more and more time, money, and effort into particular ways of using computers, these practices will become resistant to change. Now is the time to decide if computing is developing the way we think it should. Enabled and vastly accelerated by technology, and driven by imperatives for cost efficiency, flexibility, and responsiveness, work in the design sector is changing in every respect. It is stands to reason that architects must change too - on every level - not only by expanding the scope of their design concerns, but by altering design process. Very often we can read, that the recent new technologies, the availability of computers and software, imply that use of CAAD software in design office is growing enormously and computers really have changed the production of contract documents in architectural offices.
keywords Computers, CAAD, Cyberreal, Design, Interactive, Medium, Sketches, Tools, Virtual Reality
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/asan/asanowic.htm
last changed 2022/06/07 07:50

_id 536e
authors Bouman, Ole
year 1997
title RealSpace in QuickTimes: architecture and digitization
source Rotterdam: Nai Publishers
summary Time and space, drastically compressed by the computer, have become interchangeable. Time is compressed in that once everything has been reduced to 'bits' of information, it becomes simultaneously accessible. Space is compressed in that once everything has been reduced to 'bits' of information, it can be conveyed from A to B with the speed of light. As a result of digitization, everything is in the here and now. Before very long, the whole world will be on disk. Salvation is but a modem away. The digitization process is often seen in terms of (information) technology. That is to say, one hears a lot of talk about the digital media, about computer hardware, about the modem, mobile phone, dictaphone, remote control, buzzer, data glove and the cable or satellite links in between. Besides, our heads are spinning from the progress made in the field of software, in which multimedia applications, with their integration of text, image and sound, especially attract our attention. But digitization is not just a question of technology, it also involves a cultural reorganization. The question is not just what the cultural implications of digitization will be, but also why our culture should give rise to digitization in the first place. Culture is not simply a function of technology; the reverse is surely also true. Anyone who thinks about cultural implications, is interested in the effects of the computer. And indeed, those effects are overwhelming, providing enough material for endless speculation. The digital paradigm will entail a new image of humankind and a further dilution of the notion of social perfectibility; it will create new notions of time and space, a new concept of cause and effect and of hierarchy, a different sort of public sphere, a new view of matter, and so on. In the process it will indubitably alter our environment. Offices, shopping centres, dockyards, schools, hospitals, prisons, cultural institutions, even the private domain of the home: all the familiar design types will be up for review. Fascinated, we watch how the new wave accelerates the process of social change. The most popular sport nowadays is 'surfing' - because everyone is keen to display their grasp of dirty realism. But there is another way of looking at it: under what sort of circumstances is the process of digitization actually taking place? What conditions do we provide that enable technology to exert the influence it does? This is a perspective that leaves room for individual and collective responsibility. Technology is not some inevitable process sweeping history along in a dynamics of its own. Rather, it is the result of choices we ourselves make and these choices can be debated in a way that is rarely done at present: digitization thanks to or in spite of human culture, that is the question. In addition to the distinction between culture as the cause or the effect of digitization, there are a number of other distinctions that are accentuated by the computer. The best known and most widely reported is the generation gap. It is certainly stretching things a bit to write off everybody over the age of 35, as sometimes happens, but there is no getting around the fact that for a large group of people digitization simply does not exist. Anyone who has been in the bit business for a few years can't help noticing that mum and dad are living in a different place altogether. (But they, at least, still have a sense of place!) In addition to this, it is gradually becoming clear that the age-old distinction between market and individual interests are still relevant in the digital era. On the one hand, the advance of cybernetics is determined by the laws of the marketplace which this capital-intensive industry must satisfy. Increased efficiency, labour productivity and cost-effectiveness play a leading role. The consumer market is chiefly interested in what is 'marketable': info- and edutainment. On the other hand, an increasing number of people are not prepared to wait for what the market has to offer them. They set to work on their own, appropriate networks and software programs, create their own domains in cyberspace, domains that are free from the principle whereby the computer simply reproduces the old world, only faster and better. Here it is possible to create a different world, one that has never existed before. One, in which the Other finds a place. The computer works out a new paradigm for these creative spirits. In all these distinctions, architecture plays a key role. Owing to its many-sidedness, it excludes nothing and no one in advance. It is faced with the prospect of historic changes yet it has also created the preconditions for a digital culture. It is geared to the future, but has had plenty of experience with eternity. Owing to its status as the most expensive of arts, it is bound hand and foot to the laws of the marketplace. Yet it retains its capacity to provide scope for creativity and innovation, a margin of action that is free from standardization and regulation. The aim of RealSpace in QuickTimes is to show that the discipline of designing buildings, cities and landscapes is not only a exemplary illustration of the digital era but that it also provides scope for both collective and individual activity. It is not just architecture's charter that has been changed by the computer, but also its mandate. RealSpace in QuickTimes consists of an exhibition and an essay.
series other
email
last changed 2003/04/23 15:14

_id cc90
authors Kolarevic, Branko
year 1998
title CAD@HKU
source ACADIA Quarterly, vol. 17, no. 4, pp. 16-17
doi https://doi.org/10.52842/conf.acadia.1998.016
summary Since 1993, we have experimented with Virtual Design Studios (VDS) as an on-going research project that investigates the combination of current computer-aided design (CAD), computer networks (Internet), and computer supported collaborative work (CSCW) techniques to bring together studentsat geographically distributed locations to work in a virtual atelier. In 1993 the theme of the first joint VDS project was in-fill housing for the traditional Chinese walled village of Kat Hing Wai in the New Territories north of Hong Kong, and our partners included MIT and Harvard in Boston (USA), UBC in Vancouver (Canada), and Washington University in St. Louis (USA). In 1994 we were joined by Cornell (USA) and Escola Tecnica Superior d’Arquitectura de Barcelona (Spain) to re-design Li Long housing in Shanghai, and 1995 added the Warsaw Institute of Technology (Poland) for the ACSA/Dupont competition to design a Center for Cultural and Religious Studies in Japan. The 1996 topic was an international competition to design a monument located in Hong Kong to commemorate the return of Hong Kong to Chinese sovereignty in 1997. Communication was via e-mail, the WorldWide Web with limited attempts at VRML, and network video. Several teaching and research experiments conducted through these projects have demonstrated the viability and potential of using electronic, telecommunications, and videoconferencing technologies in collaborative design processes. Results of these VDS have been presented at conferences worldwide, explained in journal papers and published in Virtual Design Studio, edited by J. Wojtowicz, published by HKU Press.
series ACADIA
email
last changed 2022/06/07 07:51

_id diss_marsh
id diss_marsh
authors Marsh, A.J.
year 1997
title Performance Analysis and Conceptual Design
source School of Architecture and Fine Arts, University of Western Australia
summary A significant amount of the research referred to by Manning has been directed into the development of computer software for building simulation and performance analysis. A wide range of computational tools are now available and see relatively widespread use in both research and commercial applications. The focus of development in this area has long been on the accurate simulation of fundamental physical processes, such as the mechanisms of heat flow though materials, turbulent air movement and the inter-reflection of light. The adequate description of boundary conditions for such calculations usually requires a very detailed mathematical model. This has tended to produce tools with a very engineering-oriented and solution-based approach. Whilst becoming increasingly popular amongst building services engineers, there has been a relatively slow response to this technology amongst architects. There are some areas of the world, particularly the UK and Germany, where the use of such tools on larger projects is routine. However, this is almost exclusively during the latter stages of a project and usually for purposes of plant sizing or final design validation. The original conceptual work, building form and the selection of materials being the result of an aesthetic and intuitive process, sometimes based solely on precedent. There is no argument that an experienced designer is capable of producing an excellent design in this way. However, not all building designers are experienced, and even fewer have a complete understanding of the fundamental physical processes involved in building performance. These processes can be complex and often highly inter-related, often even counter-intuitive. It is the central argument of this thesis that the needs of the building designer are quite different from the needs of the building services engineer, and that existing building design and performance analysis tools poorly serve these needs. It will be argued that the extensive quantitative input requirement in such tools acts to produce a psychological separation between the act of design and the act of analysis. At the conceptual stage, building geometry is fluid and subject to constant change, with solid quantitative information relatively scarce. Having to measure off surface areas or search out the emissivity of a particular material forces the designer to think mathematically at a time when they are thinking intuitively. It is, however, at this intuitive stage that the greatest potential exists for performance efficiencies and environmental economies. The right orientation and fenestration choice can halve the airconditioning requirement. Incorporating passive solar elements and natural ventilation pathways can eliminate it altogether. The building form can even be designed to provide shading using its own fabric, without any need for additional structure or applied shading. It is significantly more difficult and costly to retrofit these features at a later stage in a project’s development. If the role of the design tool is to serve the design process, then a new approach is required to accommodate the conceptual phase. This thesis presents a number of ideas on what that approach may be, accompanied by some example software that demonstrates their implementation.
series thesis:PhD
more http://www.squ1.com/site.html
last changed 2003/11/28 07:33

_id 2423
authors Morozumi, M., Takahasi, M., Naka, R., Kawasumi, N., Homma, R., Mitchell. W.J., Yamaguchi, S. and Iki, K.
year 1997
title The Levels of Communications Achieved Through Network in an International Collaborative Design Project: An Analysis of VDS ’96 Project Carried Out By Kumamoto University, MIT and Kyoto Institute of Technology
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 143-152
doi https://doi.org/10.52842/conf.caadria.1997.143
summary This paper reviewed the process and the achievements of a five-week-long virtual design studio project the authors carried out with three universities in Japan and the United States in the summer of 1996, in which there was no communication among team members other than network media. After analyzing the use of communication tools in different situations of design communication, and the level of communications achieved in this project, the authors concluded that the present network technology could provide sufficient levels of communication, if only participants could put forth some amount of extra effort for communication among team members.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 2064
authors Murakami, Y., Morozumi, M., Iino, K., Homma, R. and Iki, K.
year 1997
title On the Development and the Use of Group Work CAD for Windows-PCS
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 179-186
doi https://doi.org/10.52842/conf.caadria.1997.179
summary With the development of high-band width communication technology, designers’ interests seem to shift gradually from a single-user, single-domain system to a network based group-work design system. So long as one regards that the design activity develops only in a concurrent, but asynchronous fashions, it is possible to say that file transfers through computer networks have already opened up the possibility of a hands-on collaborative design process in which all participants do not have to gather in the same place. However few CAD systems support group design work that develops in a concurrent synchronous fashion. This paper discusses a basic model of group work CAD systems that the authors have developed for windows PCs linked with LAN. Reviewing procedure of system operation, the authors conclude that the system could stimulate and accelerate a process of group wok design.
series CAADRIA
email
last changed 2022/06/07 07:59

_id f998
authors Mynatt, E.D., Adler, A., Ito, M. and O‘Day, V.L.
year 1997
title Design for network communities
source Proceedings of CHI, ACM Press, New York, pp. 210-217
summary Collaboration has long been of considerable interest in the CHI community. This paper proposes and explores the concept of network communities as a crucial part of this discussion. Network communities are a form of technology-mediated environment that foster a sense of community among users. We consider several familiar systems and describe the shared characteristics these systems have developed to deal with critical concerns of collaboration. Based on our own experience as designers and users of a variety of network communities, we extend this initial design space along three dimensions: the articulation of a persistent sense of location, the boundary tensions between real and virtual worlds, and the emergence and evolution of community.
series other
email
last changed 2003/04/23 15:50

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e43a
authors Richens, P.
year 1997
title Beyond Photorealism
source Architects’ Journal, 12/6/97
summary Computer rendering has come a long way in the last twenty years. But is it going in the right direction? Is the glossy photo-realistic image the only goal worth pursuing? And does the process of making it contribute enough to the design, or the ongoing dialogue with the client? There certainly are alternative modes of image-making. Frank Lloyd Wright, according to legend, could conceive a whole building in his head, and set it down rapidly, in plan and section. He would leave these drawings overnight to his assistant, who would set up a perspective. In the morning, FLW would spend an hour or two completing the rendering, ready for a lunch-time meeting with his clients. Today, many architects use their computers in the same way as FLW used his night-staff, to set-up an outline perspective, over which a rendering is produced by hand. Students, we observe, will often attempt to complete the rendering using a paint program such as Photoshop to apply textures and entourage in a kind of electronic collage.
series journal paper
email
more http://www.arct.cam.ac.uk/research/pubs/html/rich97c/
last changed 2003/05/15 21:45

_id caadria2006_633
id caadria2006_633
authors WAN-YU LIU
year 2006
title THE EMERGING DIGITAL STYLE: Attention shift in architectural style recognition
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 633-635
doi https://doi.org/10.52842/conf.caadria.2006.x.g4f
summary “Style” has long been an important index to observe the design thinking of designers in architecture. Gombrich (1968) defined style as a particular selection from the alternatives when doing things; Ackerman (1963) considered that a distiguishable ensemble of certain characteristics we call a style; Schapiro (1961) pointed out that style is constant forms, and sometimes the constant elements, qualities and expression; Kirsch (1998), Cha and Gero (1999) thought of style as a form element and shape pattern. As Simon and others referred to, style emerged from the process of problem solving, Chan (1994, 2001) ever devised a serious of experiments to set up the operational definitions of style, further five factors that relate to generating styles. Owing to that the greater part of sketches and drawings in the design process couldn’t be replaced by computer-aided design systems (Eisentraut, 1997), designers must shift between different problem-solving methods while facing different design problems. The purpose in this research is to discuss the influences of computer usage on style generation and style recognition: The employment of certain procedural factors that occurred in the design processes that using conventional media is different from the ones that using computer media? Do personal styles emerge while designers shifting between different media in the design processes? Does any unusual phenomenon emerge while accustomed CAD-systems designers recognizing a style?
series CAADRIA
email
last changed 2022/06/07 07:49

_id 0286
authors Will, Barry F. and Siu-Pan Li , Thomas
year 1997
title Computers for Windows: Interactive Optimization Tools for Architects designing openings in walls (IOTA)
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.d4u
summary Size, shape and disposition of windows in walls has long been an integral expression of style in architecture. As buildings have grown taller the relationships of the windows to the ground plane and to the surrounding environments have become more complex and difficult to predict. Traditionally architects have had to use their own knowledge, experience and feelings in the design of windows. There may be few, if any, scientific bases for their decisions. The difficulty in making good design decisions is compounded because many criteria for window design, such as daylight, sunlight, ventilation, sound, view and privacy have to be considered simultaneously. It is here that computers can help, on the one hand, by providing ‘expert knowledge’ so that architects can consult the cumulative knowledge database before making a decision, whilst on the other hand, evaluations of the decisions taken can be compared with a given standard or with alternative solutions.

‘Expert knowledge’ provision has been made possible by the introduction of hypertext, the advancement of the world wide web and the development of large scale data-storage media. Much of the computer’s value to the architects lies in its ability to assist in the evaluation of a range of performance criteria. Without the help of a computer, architects are faced with impossibly complex arrays of solutions. This paper illustrates an evaluation tool for two factors which are important to the window design. The two factors to be investigated in this paper are sunlighting and views out of windows.

Sunlight is a quantitative factor that can theoretically be assessed by some mathematical formulae provided there is sufficient information for calculation but when total cumulative effects of insolation through the different seasons is required, in addition to yearly figures, a design in real-time evolution requires substantial computing power. Views out of windows are qualitative and subjective. They present difficulties in measurement by the use of conventional mathematical tools. These two fields of impact in window design are explored to demonstrate how computers can be used in assessing various options to produce optimal design solutions. This paper explains the methodologies, theories and principles underlying these evaluation tools. It also illustrates how an evaluation tool can be used as a design tool during the design process.

keywords Sunlight, View, Window Design, Performance Evaluation, Expert Systems, Simulation, Fuzzy LogicExpert Systems, Simulation, Fuzzy Logic
series eCAADe
more http://info.tuwien.ac.at/ecaade/proc/li/li.htm
last changed 2022/06/07 07:50

_id ebcf
authors Williams, R.L. and Kuriger, R.J.
year 1997
title Kinematics, statics, and dexterity of planar active structure modules
source Automation in Construction 7 (1) (1997) pp. 77-89
summary Construction automation could benefit from long-reach, lightweight, dexterous, strong, and stiff manipulators constructed from active structures (variable geometry trusses). Unfortunately, the few systems actually built to date have not delivered these desired characteristics (two such systems are heavy, slow, not dexterous enough, and too flexible) due to lack of unified, integrated, optimized design. This article presents a first step for integrated kinematic, static, dynamic, and control constraints in structural optimization. Workspace area, end-link angle, extension ratio, dexterity, and static loading are all considered in comparisons of basic planar active structure modules which could be used as joints in 3D active structures for construction automation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 666e
authors Compagnon, R.
year 1997
title The Radiance simulation software in the architecture teaching context
source Proceedings of the 2nd Florence International conference for Teachers of Architecture. Firenze
summary Two methods of introducing the radiance lighting and daylighting simulation software to architecture students in a relatively short time are presented. The production of visual teaching materialusing the same software is also discussed.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_728743 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002