CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 519

_id d79b
id d79b
authors Kim, I., Liebich, T. and Maver, T.
year 1997
title Managing design data in an integrated CAAD environment: a product model approach
source Automation in Construction 7 (1) (1997) pp. 35-53
summary This paper proposes a prototype architectural design environment which aims to integrate various applications for designing a building. Within an object-oriented design environment, a core data model and a data management system have been implemented to seamlessly connect all applications. The process of design has been investigated with the purpose of characterising the role that a system of this kind may have. In defining the system, an approach has been used that privileges the relationships with the existing computer-aided design (CAD) tools based on data exchange standards in course of definition today.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/09/03 16:20

_id maver_107
id maver_107
authors Chen, Yan and Maver, Tom W.
year 1997
title Integrating Design Tools within a Human Collaborative Working Context
source International Journal of Construction IT, Vol5, No 2, pp 35-53
summary Integrating design tools has been an important research subject. The work to be reported in this paper differs from many previous efforts in that it not only tackles tool-tool interoperation, but also does so within a human collaborative working context We suggest that design integration support should include not only tool interoperability, but also mechanisms for co-ordinate and control the tool use. We also argue that the higher-level management support should include not only formalised and automated mechanisms, but also semi-automated and even informal mechanisms for human designers to directly interact with each other. Within a collaborative working framework, we'll present a hybrid architecture for tool integration, in which the human designers and the design tools are assumed to be distributed while the management is centralised. In this approach, each design tool is wrapped as an autonomous service provider with its own data store; thus the project design data is physically distributed with the design tools. A meta-data augmented product model, which populates a central meta-data repository serving as a "map" for locating the distributed design objects, is devised to provide a common vocabulary for communications and to assist the management of the distributed resources and activities. A design object broker is used to mediate among the distributed tools, and the central meta-data repository. The reported work has been part of a collaborative design system called virtual studio environment We'll illustrate how the integrated design tools might be used in human design work within the virtual studio environment.
series other
email
last changed 2003/09/03 15:36

_id af28
authors Dijkstra, J. and Timmermans, H.J.P.
year 1997
title The Application of Conjoint Measurement as a Dynamic Decision Making Tool in a Virtual Reality Environment
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 757-770
summary This paper describes an innovative aspect of an ongoing research project to develop a virtual reality based conjoint analysis system. Conjoint analysis involves the use of designed hypothetical choice situations to measure subjects' preferences and predict their choice in new situations. Conjoint experiments involve the design and analysis of hypothetical decision tasks. Hypothetical alternatives, called product profiles, are generated and presented to subjects. A virtual reality presentation format has been used to represent these profiles. A profile consists of a virtual environment model and dynamic virtual objects representing the attributes with their respective levels. Conventional conjoint choice models are traditionally based on preference or choice data, not on dynamic decision making aspects. The status of this new approach will be described.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id c906
authors Ekholm, Anders and Fridqvist, Sverker
year 1997
title Design and Modelling in a Computer Integrated Construction Process - The BAS-CAAD Project
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 501-518
summary A new approach to product modelling in a design context is proposed. CAD-software must not only enable product modelling, but must also support product design. This is not fully achieved in the traditional 'enumerative' approach to product modelling. We discuss how product design and modelling can be based on a facetted' approach to information modelling, and how a data model that supports the design process can be based on a framework for system information. The background for our research is the current development in the construction industry towards a computer integrated construction process. A first prerequisite for this is the use of computer based models. Another prerequisite is that CAD-software can support the design of the results of the construction process, including construction works, user organisations, and the production and facility management processes. A third prerequisite is that computer based models are built with standardised concepts and terminology to enable exchange of information between different actors and computer systems during different stages of the construction process. Principles for organising frameworks for user organisation and construction works information are presented in an appendix.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 0de7
authors Müller, Christian
year 1997
title An Advanced Groupware Approach for an Integrated Planning Process in Building Construction
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 475-480
summary Increasing complexity of today's buildings requires a high level of integration in the planning process. Common planning strategies, where individual project partners cooperate mainly to exchange results, are not suitable to jointly develop project goals and objectives. Integrated planning, a more holistic approach to deal with complex problems, is based on a high degree of communication among team members and leads to a goal oriented cooperation. This paper focuses on the application of an advanced groupware approach suitable to support efficiently an integrated design process in construction. First an appropriate planning process model will be presented, which differs from common product model approaches and takes into account the great importance of team- and goal orientation in integrated planning. Then the idea of an open CSCW platform is proposed, which basic structure and containing elements are based on the defined planning model. Appropriate cooperative planning scenarios can then be ad-hoc modeled and configured dynamically on this CSCW platform according to the requirements of the specific project. For the participants of the planning process, the resulting groupware approach represents an integrated computer based working environment. This environment allows a kind of immersion into the project. Finally a prototypical implementation of this approach will be shortly discussed.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 6496
authors Chen, Y.Z. and Maver, T.W.
year 1997
title Integrating Design Tools within a Human Collaborative Working
source The Int. Journal of Construction IT 5(2), pp. 47-73
summary This paper stresses the importance of establishing a collaborative working context as the basis for design integration. Within a virtual studio environment framework, a hybrid architecture for design tool integration is presented. Each design tool is wrapped as an autonomous service provider with its own data store; thus the project design data is physically distributed with the design tools. A global product model, which is augmented with meta-data description, is employed to provide a common vocabulary for communications and to assist the management of the distributed resources and activities. Collaboration-aware information is modelled and structured through the meta-data model and a tool model. Based on this, mechanisms for tool service coodination in varying modes are developed. It is then illustrated, through an implemented prototype system, how the integrated design tools might be used in human design work.
series journal paper
last changed 2003/05/15 21:45

_id 0a35
authors Junge, R., Steinmann, R. and Beetz, K.
year 1997
title A Dynamic Product Model - A base for Distributed Applications
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 617-634
summary The project work described in this paper is a part of the ESPRIT VEGA Project. It is related to two companion papers issued in this conference proceedings. 'Product Data Model for Interoperability in an Distributed Environment' and 'The VEGA Platform' are describing the technological basis for an application modeled to capture and convert the working environment of architects and building engineers, in short: the building design team, to an computer environment. The ESPRIT projects are increasingly forced into 'public and private risk funding and sharing policy. This part of VEGA is explicitly directed to exploitation of the EU funded project. This can be reached by a stepwise (small steps) transition from research to commercial implementation.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 2c17
authors Junge, Richard and Liebich, Thomas
year 1997
title Product Data Model for Interoperability in an Distributed Environment
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 571-589
summary This paper belongs to a suite of three interrelated papers. The two others are 'The VEGA Platform' and 'A Dynamic Product Model'. These two companion papers are also based on the VEGA project. The ESPRIT project VEGA (Virtual Enterprises using Groupware tools and distributed Architectures) has the objective to develop IT solutions enabling virtual enterprises, especially in the domain of architectural design and building engineering. VEGA shall give answers to many questions of what is needed for enabling such virtual enterprise from the IT side. The questions range from technologies for networks, communication between distributed applications, control, management of information flow to implementation and model architectures to allow distribution of information in the virtual enterprises. This paper is focused on the product model aspect of VEGA. So far modeling experts have followed a more or less centralized architecture (central or central with 4 satellites'). Is this also the architecture for the envisaged goal? What is the architecture for such a distributed model following the paradigm of modeling the , natural human' way of doing business? What is the architecture enabling most effective the filtering and translation in the communication process. Today there is some experience with 'bulk data' of the document exchange type. What is with incremental information (not data) exchange? Incremental on demand only the really needed information not a whole document. The paper is structured into three parts. First there is description of the modeling history or background. the second a vision of interoperability in an distributed environment from the users coming from architectural design and building engineering view point. Third is a description of work undertaken by the authors in previous project forming the direct basis for the VEGA model. Finally a short description of the VEGA project, especially the VEGA model architecture.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id eea1
authors Achten, Henri
year 1997
title Generic Representations - Typical Design without the Use of Types
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 117-133
summary The building type is a (knowledge) structure that is both recognised as a constitutive cognitive element of human thought and as a constitutive computational element in CAAD systems. Questions that seem unresolved up to now about computational approaches to building types are the relationship between the various instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed functional use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called 'prototypes') face problems clarifying these questions. It is proposed in this research not to focus on a definition of 'type,' but rather to investigate the role of knowledge connected to building types in the design process. The basic proposition is that the graphic representations used to represent the state of the design object throughout the design process can be used as a medium to encode knowledge of the building type. This proposition claims that graphic representations consistently encode the things they represent, that it is possible to derive the knowledge content of graphic representations, and that there is enough diversity within graphic representations to support a design process of a building belonging to a type. In order to substantiate these claims, it is necessary to analyse graphic representations. In the research work, an approach based on the notion of 'graphic units' is developed. The graphic unit is defined and the analysis of graphic representations on the basis of the graphic unit is demonstrated. This analysis brings forward the knowledge content of single graphic representations. Such knowledge content is declarative knowledge. The graphic unit also provides the means to articulate the transition from one graphic representation to another graphic representation. Such transitions encode procedural knowledge. The principles of a sequence of generic representations are discussed and it is demonstrated how a particular type - the office building type - is implemented in the theoretical work. Computational work on implementation part of a sequence of generic representations of the office building type is discussed. The paper ends with a summary and future work.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 823f
authors Bignon, J.C., Halin, G. and Humbert, P.
year 1997
title Hypermedia Structuring of the Technical Documentation for the Architectural Aided Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 843-848
summary The definition of an universal structuring model of the technical documentation is arduous, indeed utopian considering the great number of products and the diversity of relative information. To answer this situation we are trying to develop a general approach of the documentation. The document is the base entity of documentation structuring and it represents a coherent informative unit. We propose a model of document hypermedia structuring. This model allows the definition, the presentation, the navigation and the retrieval of general information on building products by a document manipulation. It is associated with a hypermedia design method adapted to document management. This method proposes, after the identification of the user, three phases of hypermedia definition : data definition, navigation definition and user interface definition. The model of a hypermedia structuring of the technical documentation proposed in this article is at once independent of available information on products, open, and makes easier the addition of new navigational functions.
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id f5ee
authors Erhorn, H., De Boer, J. and Dirksmueller, M.
year 1997
title ADELINE, an Integrated Approach to Lighting Simulation
source Proceedings of Right Light 4, 4th European Conference on Energy-Efficient Lighting, pp.99-103
summary The use of daylighting and artificial lighting simulation programs to calculate complex systems and models in the design practice often is impeded by the fact that the operation of these programs, especially the model input, is extremely complicated and time-consuming. Programs that are easier to use generally do not show the calculation capabilities required in practice. A second obstacle arises as the lighting calculations often do not allow any statements regarding the interactions with the energetic and thermal building performance. Both problems are mainly due to a lacking integration of the design tools of other building design practitioners as well as due to insufficient user interfaces. The program package ADELINE (Advanced Daylight and Electric Lighting Integrated New Environment) being available since May 1996 as completely revised version 2.0 presents a promising approach to solve these problems. This contribution describes the approaches and methods used within the international project IEA Task 21 for a further development of the ADELINE system. Aim of this work is a further improvement of user interfaces based on the inclusion of new dialogs and on a portation of the program system from MS-DOS to the Windows NT platform. Additional focus is laid on the use of recent developments in the field of information technology and experiences gained in other projects on integrated building design systems, like for example EU-COMBINE, in a pragmatical way. An integrated building design system with open standardized interfaces is to be achieved inter alia by using ISOSTEP formats, database technologies and a consequent, object-oriented design.
series other
last changed 2003/04/23 15:50

_id a99e
authors Kalay, Yehuda E.
year 1997
title P3: An Integrated Environment to Support Design Collaboration
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 191-205
doi https://doi.org/10.52842/conf.acadia.1997.191
summary Buildings are the combined product of the efforts of many participants interacting in complex ways over a prolonged period of time. Currently, sequential communication among the participants is the standard means of collaboration. This method, which is well suited to current legal and professional practices, is inefficient, fraught with loss of information and prone to errors, cost and schedule overruns, and promotes optimization of individual parts at the expense of the overall project. This paper describes an integrated design environment that will facilitate collaborative decision making among the various participants, not merely communicate the results of decisions made by one participant to the other participants in the design team. It is based on the convergence of computing and telecommunication technologies, coupled with the emergence of new design paradigms, which together can overcome the technical difficulties associate with current collaborative design practices. It comprises three different modules: a product model, a performance model, and a process model (hence it is called P3). The paper presents each of these models and their integration into a unified framework.

series ACADIA
email
last changed 2022/06/07 07:52

_id 8e5c
authors Khemlani, Lachmi and Kalay, Yehuda E.
year 1997
title An Integrated Computing Environment for Collaborative, Multi-Disciplinary Building Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 389-416
summary The increasing complexity of the built environment requires that more knowledge and experience be brought to bear on its design, construction and maintenance. The commensurate growth of knowledge in the participating disciplines-architecture, engineering, construction management, facilities management, and others-has tended to diversify each one into many sub-specializations. The resulting fragmentation of the design-built-use process is potentially detrimental to the overall quality of built environment. An efficient system of collaboration between all the specialist participants is needed to offset the effects of fragmentation. It is here that computers, with their ubiquitous presence in all disciplines, can serve as a medium of communication and form the basis of a collaborative, multi- disciplinary design environment. This paper describes the ongoing research on the development of such an integrated computing environment that will provide the basis for design and evaluation tools ranging across the many building-related disciplines. The bulk of the discussion will focus on the problem of a building representation that can be shared by all these disciplines, which, we posit, lies at the core of such an environment. We discuss the criteria that characterize this shared building representation, and present our solution to the problem. The proposed model has been adapted from geometric modeling, and addresses explicitly the difficult Problem of generality versus completeness of the represented information. The other components of the integrated environment that are under development are also described. The paper concludes with some implementation details and a brief look at two evaluation tools that use the proposed building representation for their task.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id e82c
authors Mahdavi, A., Mathew, P. and Wong, N.H.
year 1997
title A Homology-Based Mapping Approach to Concurrent Multi-Domain Performance Evaluation
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 237-246
doi https://doi.org/10.52842/conf.caadria.1997.237
summary Over the past several years there have been a number of research efforts to develop integrated computational tools which seek to effectively support concurrent design and performance evaluation. In prior research, we have argued that elegant and effective solutions for concurrent, integrated design and simulation support systems can be found if the potentially existing structural homologies in general (configurational) and domain-specific (technical) building representations are creatively exploited. We present the use of such structural homologies to facilitate seamless and dynamic communication between a general building representation and multiple performance simulation modules – specifically, a thermal analysis and an air-flow simulation module. As a proof of concept, we demonstrate a computational design environment (SEMPER) that dynamically (and autonomously) links an object-oriented space-based design model, with structurally homologous object models of various simulation routines.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 6d59
authors Papamichael, K., LaPorta, J. and Chauvet, H.
year 1997
title Building Design Advisor: automated integration of multiple simulation tools
source Automation in Construction 6 (4) (1997) pp. 341-352
summary The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, conceptual and schematic phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to benefit from the capabilities of multiple tools. The BDA provides a graphical user interface that consists of two main elements: the Building Browser and the Decision Desktop. The Browser allows building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to multiple descriptive and performance parameters addressed by the tools linked to the BDA. The BDA is implemented as a Windows®-based application for personal computers. Its initial version is linked to a Schematic Graphic Editor (SGE), which allows designers to quickly and easily specify the geometric characteristics of building components and systems. For every object created in the SGE, the BDA activates a Default Value Selector (DVS) mechanism that selects `smart' default values from a Prototypes Database for all non-geometric parameters required as input to the analysis and visualization tools linked to the BDA. In addition to the SGE that is an integral part of its user interface, the initial version of the BDA is linked to a daylight analysis tool, an energy analysis tool, and a multimedia, Web-based Case Studies Database (CSD). The next version of the BDA will be linked to additional analysis tools, such as the DOE-2 (thermal, energy and energy cost) and RADIANCE (day/lighting and rendering) computer programs. Plans for the future include the development of links to cost estimating and environmental impact modules, building rating systems, CAD software and electronic product catalogs.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 0c4a
authors Tonarelli, P., Ferries, B., Delaporte, J.L. and Tahon, C.
year 1997
title Proposal of a product model for the building trade
source Automation in Construction 5 (6) (1997) pp. 501-520
summary Like other industries, the building trade has had to face up to economic crisis. It is crucial for all the interacting parties to design and achieve new practices and methods, allowing them to improve performances as well as the quality of the object to be built, while reducing the costs of building projects. To achieve this, a multiple evolution of the building trade is necessary: a technical evolution which defines a process for improving performances, an organisational evolution which better structures the building project procedure and improves communication between the actors, and finally a human evolution which increases the practical and theoretical background of the parties involved. The research of Laboratoire d'Automatique et de Mécanique Industrielle et Humaine, Université de Valenciennes, particularly concerns the last two points, and aims to define a complete methodology to apply a concurrent engineering approach to the building trade. This methodology includes three stages: the definition of a building project procedure which integrates a concurrent approach, the establishment of a product model; and the design of an integrated computer system for the building trade.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 736a
authors Van Helvoort, Rob
year 1997
title Drawing with Pencil, Pen and Mouse
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 363-368
summary The traditional way of architectural design leads to some shortcomings with respect to the quality of the design and the efficiency of the design process. Therefore possibilities for improvements have to be considered. In order to come to fundamental improvements the application of advanced computer technology in the field of architecture has to be co-ordinated with improvements in the area of design methodologies. In this paper we suggest a new methodology for architectural design. It is based on an integrated manner of designing. Despite some early design steps the whole design process is executed on the basis of a 3D model which is handled by means of computers. The central data objects in the design process are the different types of models. The models contain all relevant information generated in the design process. A comparison of our approach with the traditional way of designing illustrates the potential of the new methodology.
keywords Design Methodologies, Integrated Design Systems, Computer Support
series AVOCAAD
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_182773 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002