CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 519

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d79b
id d79b
authors Kim, I., Liebich, T. and Maver, T.
year 1997
title Managing design data in an integrated CAAD environment: a product model approach
source Automation in Construction 7 (1) (1997) pp. 35-53
summary This paper proposes a prototype architectural design environment which aims to integrate various applications for designing a building. Within an object-oriented design environment, a core data model and a data management system have been implemented to seamlessly connect all applications. The process of design has been investigated with the purpose of characterising the role that a system of this kind may have. In defining the system, an approach has been used that privileges the relationships with the existing computer-aided design (CAD) tools based on data exchange standards in course of definition today.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/09/03 16:20

_id 7b96
authors Schley, M., Buday, R., Sanders, K. and Smith, D. (eds.)
year 1997
title AIA CAD layer guidelines
source Washington, DC: The American Institute of Architects Press
summary The power and potential of computer-aided design (CAD) is based on the ability to reuse and share information. This is particularly true in building design and construction, a field that involves extensive information and teamwork between a variety of consultants. CAD provides both a common medium of exchange and a tool for producing the documentation required for construction and management. The key to realizing the potential of CAD is using common organizing principles. In particular, standard organization of files and layers is essential for efficient work and communication. Virtually all CAD systems support the concept of layers. This function allows graphic information to be grouped for display or plotting purposes. Intelligent use of layers can reduce drawing time and improve drawing coordination. By turning selected layers on or off, a variety of different plotted sheets can be produced. The layer is the basic CAD tool for managing visual information. By making it possible to reuse information, layers reduce drawing time and improve coordination. Layers and the new class libraries and object data complement, rather than compete with each other. Using layers to manage the visual aspects of graphic entities, with class libraries and object data to store the non-graphic data, gives architects an efficient way to work in CAD.
series other
last changed 2003/04/23 15:14

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id debf
authors Bertol, D.
year 1997
title Designing Digital Space - An Architect's Guide to Virtual Reality
source John Wiley & Sons, New York
summary The first in-depth book on virtual reality (VR) aimed specifically at architecture and design professionals, Designing Digital Space steers you skillfully through the learning curve of this exciting new technology. Beginning with a historical overview of the evolution of architectural representations, this unique resource explains what VR is, how it is being applied today, and how it promises to revolutionize not only the design process, but the form and function of the built environment itself. Vividly illustrating how VR fits alongside traditional methods of architectural representation, this comprehensive guide prepares you to make optimum practical use of this powerful interactive tool, and embrace the new role of the architect in a virtually designed world. Offers in-depth coverage of the virtual universe-data representation and information management, static and dynamic worlds, tracking and visual display systems, control devices, and more. Examines a wide range of current VR architectural applications, from walkthroughs, simulations, and evaluations to reconstructions and networked environments Includes insightful essays by leading VR developers covering some of today's most innovative projects Integrates VR into the historical framework of architectural development, with detailed sections on the past, present, and future Features a dazzling array of virtual world images and sequential displays Explores the potential impact of digital architecture on the built environment of the future
series other
last changed 2003/04/23 15:14

_id 536e
authors Bouman, Ole
year 1997
title RealSpace in QuickTimes: architecture and digitization
source Rotterdam: Nai Publishers
summary Time and space, drastically compressed by the computer, have become interchangeable. Time is compressed in that once everything has been reduced to 'bits' of information, it becomes simultaneously accessible. Space is compressed in that once everything has been reduced to 'bits' of information, it can be conveyed from A to B with the speed of light. As a result of digitization, everything is in the here and now. Before very long, the whole world will be on disk. Salvation is but a modem away. The digitization process is often seen in terms of (information) technology. That is to say, one hears a lot of talk about the digital media, about computer hardware, about the modem, mobile phone, dictaphone, remote control, buzzer, data glove and the cable or satellite links in between. Besides, our heads are spinning from the progress made in the field of software, in which multimedia applications, with their integration of text, image and sound, especially attract our attention. But digitization is not just a question of technology, it also involves a cultural reorganization. The question is not just what the cultural implications of digitization will be, but also why our culture should give rise to digitization in the first place. Culture is not simply a function of technology; the reverse is surely also true. Anyone who thinks about cultural implications, is interested in the effects of the computer. And indeed, those effects are overwhelming, providing enough material for endless speculation. The digital paradigm will entail a new image of humankind and a further dilution of the notion of social perfectibility; it will create new notions of time and space, a new concept of cause and effect and of hierarchy, a different sort of public sphere, a new view of matter, and so on. In the process it will indubitably alter our environment. Offices, shopping centres, dockyards, schools, hospitals, prisons, cultural institutions, even the private domain of the home: all the familiar design types will be up for review. Fascinated, we watch how the new wave accelerates the process of social change. The most popular sport nowadays is 'surfing' - because everyone is keen to display their grasp of dirty realism. But there is another way of looking at it: under what sort of circumstances is the process of digitization actually taking place? What conditions do we provide that enable technology to exert the influence it does? This is a perspective that leaves room for individual and collective responsibility. Technology is not some inevitable process sweeping history along in a dynamics of its own. Rather, it is the result of choices we ourselves make and these choices can be debated in a way that is rarely done at present: digitization thanks to or in spite of human culture, that is the question. In addition to the distinction between culture as the cause or the effect of digitization, there are a number of other distinctions that are accentuated by the computer. The best known and most widely reported is the generation gap. It is certainly stretching things a bit to write off everybody over the age of 35, as sometimes happens, but there is no getting around the fact that for a large group of people digitization simply does not exist. Anyone who has been in the bit business for a few years can't help noticing that mum and dad are living in a different place altogether. (But they, at least, still have a sense of place!) In addition to this, it is gradually becoming clear that the age-old distinction between market and individual interests are still relevant in the digital era. On the one hand, the advance of cybernetics is determined by the laws of the marketplace which this capital-intensive industry must satisfy. Increased efficiency, labour productivity and cost-effectiveness play a leading role. The consumer market is chiefly interested in what is 'marketable': info- and edutainment. On the other hand, an increasing number of people are not prepared to wait for what the market has to offer them. They set to work on their own, appropriate networks and software programs, create their own domains in cyberspace, domains that are free from the principle whereby the computer simply reproduces the old world, only faster and better. Here it is possible to create a different world, one that has never existed before. One, in which the Other finds a place. The computer works out a new paradigm for these creative spirits. In all these distinctions, architecture plays a key role. Owing to its many-sidedness, it excludes nothing and no one in advance. It is faced with the prospect of historic changes yet it has also created the preconditions for a digital culture. It is geared to the future, but has had plenty of experience with eternity. Owing to its status as the most expensive of arts, it is bound hand and foot to the laws of the marketplace. Yet it retains its capacity to provide scope for creativity and innovation, a margin of action that is free from standardization and regulation. The aim of RealSpace in QuickTimes is to show that the discipline of designing buildings, cities and landscapes is not only a exemplary illustration of the digital era but that it also provides scope for both collective and individual activity. It is not just architecture's charter that has been changed by the computer, but also its mandate. RealSpace in QuickTimes consists of an exhibition and an essay.
series other
email
last changed 2003/04/23 15:14

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id 4983
authors Cutting-Decelle, A.-F., Dubois, A.-M. and Fernandez, I.
year 1997
title Management and Integration of Product Information in Construction: Reality and Future Trends
source The Int. Journal of Construction IT 5(2), pp. 19-46
summary For many years numerous efforts have been spent on the development of standardized approaches for modelling industrial information. During this period stand-alone software tools have been developed in most industries including the Building and Construction sector : Computer Aided Design (CAD) tools, technical software such as software development for energy analysis, project management systems, product databases etc. As this set of computer tools became more and more heterogeneous, the need for communication tools has emerged to enable data to be exchanged between them. Standardising data exchange then becomes a logical step in the improvement of the information management during the whole construction process. The aim of this paper is to put forward the state-of-the art in the domain of product model approaches and standards developments : ISO 10303 STEP, ISO 13584 P-LIB and ISO 15531 MANDATE. We will give a global overview of the existing applications in the construction sector, both in terms of product, or process models, most of them provided by either national or European projects.
series journal paper
last changed 2003/05/15 21:45

_id 0627
authors Dijkstra, J. and Timmermans, H.J.P.
year 1997
title Exploring the Possibilities of Conjoint Measurement as a Decision-Making Tool for Virtual Wayfinding Environments
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 61-71
doi https://doi.org/10.52842/conf.caadria.1997.061
summary Virtual reality systems may have a lot to offer in architecture and urban planning when visual and active environments may have a dramatic impact on individual preferences and choice behaviour. Conjoint analysis involves the use of designed hypothetical choice situations to measure individuals’ preferences and predict their choice in new situations. Conjoint experiments involve the design and analysis of hypothetical decision tasks. Alternatives are described by their main features, called attributes. Multiple hypothetical alternatives, called product profiles, are generated and presented to respondents, who are requested to express their degree of preference for these profiles or choose between these profiles. Conjoint experiments have become a popular tool to model individual preferences and decision-making in a variety of research areas. Most studies of conjoint analysis have involved a verbal description of product profiles, although some studies have used a pictorial presentation of production profiles. Virtual reality systems offer the potential of moving the response format beyond these traditional response modes. This paper describes a particular aspect of an ongoing research project which aims to develop a virtual reality based system for conjoint analysis. The principles underlying the system will be illustrated by a simple example of wayfinding in a virtual environment.
series CAADRIA
last changed 2022/06/07 07:55

_id 673a
authors Fukuda, T., Nagahama, R. and Sasada, T.
year 1997
title Networked Interactive 3-D design System for Collaboration
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 429-437
doi https://doi.org/10.52842/conf.caadria.1997.429
summary The concept of ODE (Open Design Environment) and corresponding system were presented in 1991. Then the new concept of NODE. which is networked version of ODE. was generated to make wide area collaboration in 1994. The aim of our research is to facilitate the collaboration among the various people involved in the design process of an urban or architectural project. This includes various designers and engineers, the client and the citizens who may be affected by such a project. With the new technologies of hyper medium, network, and component architecture, we have developed NODE system and applied in practical use of the collaboration among the various people. This study emphasizes the interactive 3-D design tool of NODE which is able to make realistic and realtime presentation with interactive interface. In recent years, ProjectFolder of NODE system, which is a case including documents, plans, and tools to proceed project., is created in the World Wide Web (WWW) and makes hyper links between a 3-D object and a text, an image. and other digital data.
series CAADRIA
email
last changed 2022/06/07 07:50

_id a5c7
authors Hovestadt, Ludger and Hovestadt, Volkmar
year 1997
title ARMILLA5 - Supporting Design, Construction and Management of Complex Buildings
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 135-150
summary ARMILLA5 is a generic computer aided design system, which supports the cooperative design of complex buildings (such as labs, offices or schools) over multiple levels of abstraction. It follows the metaphor of a virtual building site. The designers and engineers meet at a spatial location on the Internet and prepare the building construction by simulating the building site. This article describes the three essential components of the ARMILLA5-model: the geometric model which describes the spatial and physical aspects of the building site, the semantic model which implements passive building components as objects and active building components as applets or applications, and the planning model, which organizes the work steps of the individual engineers and their cooperation. The model is described using different software prototypes written in Objective C, CAD systems and HTML/JAVA.
keywords Dynamic Buildings, CAAD, CSCW, VRML, Case-based Reasoning, Facility Management, Augmented Reality
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 0a35
authors Junge, R., Steinmann, R. and Beetz, K.
year 1997
title A Dynamic Product Model - A base for Distributed Applications
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 617-634
summary The project work described in this paper is a part of the ESPRIT VEGA Project. It is related to two companion papers issued in this conference proceedings. 'Product Data Model for Interoperability in an Distributed Environment' and 'The VEGA Platform' are describing the technological basis for an application modeled to capture and convert the working environment of architects and building engineers, in short: the building design team, to an computer environment. The ESPRIT projects are increasingly forced into 'public and private risk funding and sharing policy. This part of VEGA is explicitly directed to exploitation of the EU funded project. This can be reached by a stepwise (small steps) transition from research to commercial implementation.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 2c17
authors Junge, Richard and Liebich, Thomas
year 1997
title Product Data Model for Interoperability in an Distributed Environment
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 571-589
summary This paper belongs to a suite of three interrelated papers. The two others are 'The VEGA Platform' and 'A Dynamic Product Model'. These two companion papers are also based on the VEGA project. The ESPRIT project VEGA (Virtual Enterprises using Groupware tools and distributed Architectures) has the objective to develop IT solutions enabling virtual enterprises, especially in the domain of architectural design and building engineering. VEGA shall give answers to many questions of what is needed for enabling such virtual enterprise from the IT side. The questions range from technologies for networks, communication between distributed applications, control, management of information flow to implementation and model architectures to allow distribution of information in the virtual enterprises. This paper is focused on the product model aspect of VEGA. So far modeling experts have followed a more or less centralized architecture (central or central with 4 satellites'). Is this also the architecture for the envisaged goal? What is the architecture for such a distributed model following the paradigm of modeling the , natural human' way of doing business? What is the architecture enabling most effective the filtering and translation in the communication process. Today there is some experience with 'bulk data' of the document exchange type. What is with incremental information (not data) exchange? Incremental on demand only the really needed information not a whole document. The paper is structured into three parts. First there is description of the modeling history or background. the second a vision of interoperability in an distributed environment from the users coming from architectural design and building engineering view point. Third is a description of work undertaken by the authors in previous project forming the direct basis for the VEGA model. Finally a short description of the VEGA project, especially the VEGA model architecture.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 01f7
authors Krause, Jeffrey
year 1997
title Agent Generated Architecture
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 63-70
doi https://doi.org/10.52842/conf.acadia.1997.063
summary This paper will describe a behavior based artificial intelligence experiment in computer generated architectural design and will explain the internal representations and procedures of an agent based autonomous system. This is a departure from traditional (AI and architectural) top-down approaches, allowing hundreds of agents to work simultaneously—building, manipulating, and dismantling their environment. Individual agents work in collaboration, in disjunction or autonomously.

Architectural design is perhaps most commonly described by the architect as consisting of the ability to see the whole picture, to organize, to collect, to juggle, to manage, and to maintain multiple conflicting goals and values. Architecture by the preceding definition is hierarchical and top-down in nature. The agent based experiment in this paper presents an alternative design process, involving multiple autonomous agents acting distributively. The agents (objects) move through the design landscape, simultaneously collaborating, building, degenerating, and transforming their world.

series ACADIA
email
last changed 2022/06/07 07:51

_id 9afb
authors Maher, M.L., Simoff, S. and Cicognani, A.
year 1997
title Observations from an experimental study of computer-mediated collaborative design
source M.L. Maher, J.S. Gero, and F Sudweeks eds. Preprints Formal Aspects of Collaborative CAD, Key Centre of Design Computing, University of Sydney, Sydney, pp.165-185
summary The use of computer technology in design practice is moving towards a distributed resource available to a team of designers. The development of software to support designers has been based largely on the assumption that there will be a single person using the software at a time. Recent developments have enabled the feasibility of software for two or more simultaneous users, leading to the possibility of computer-mediated collaborative design. Research in integrated CAD, virtual design studios, and design protocol studies provide the basis for a formal study of computer-mediated design. We develop an experimental study of computer-mediated collaborative design with the aim of collecting data on the amount and content of design semantics documented using computer applications when designing alone as compared to designing collaboratively. The experiment includes the definition of an hypothesis, aim, methodology, data collection and coding schemes. The experiment and some preliminary observations are presented, followed by directions for further research.
series other
email
last changed 2003/04/23 15:14

_id 6d59
authors Papamichael, K., LaPorta, J. and Chauvet, H.
year 1997
title Building Design Advisor: automated integration of multiple simulation tools
source Automation in Construction 6 (4) (1997) pp. 341-352
summary The Building Design Advisor (BDA) is a software environment that supports the integrated use of multiple analysis and visualization tools throughout the building design process, from the initial, conceptual and schematic phases to the detailed specification of building components and systems. Based on a comprehensive design theory, the BDA uses an object-oriented representation of the building and its context, and acts as a data manager and process controller to allow building designers to benefit from the capabilities of multiple tools. The BDA provides a graphical user interface that consists of two main elements: the Building Browser and the Decision Desktop. The Browser allows building designers to quickly navigate through the multitude of descriptive and performance parameters addressed by the analysis and visualization tools linked to the BDA. Through the Browser the user can edit the values of input parameters and select any number of input and/or output parameters for display in the Decision Desktop. The Desktop allows building designers to compare multiple design alternatives with respect to multiple descriptive and performance parameters addressed by the tools linked to the BDA. The BDA is implemented as a Windows®-based application for personal computers. Its initial version is linked to a Schematic Graphic Editor (SGE), which allows designers to quickly and easily specify the geometric characteristics of building components and systems. For every object created in the SGE, the BDA activates a Default Value Selector (DVS) mechanism that selects `smart' default values from a Prototypes Database for all non-geometric parameters required as input to the analysis and visualization tools linked to the BDA. In addition to the SGE that is an integral part of its user interface, the initial version of the BDA is linked to a daylight analysis tool, an energy analysis tool, and a multimedia, Web-based Case Studies Database (CSD). The next version of the BDA will be linked to additional analysis tools, such as the DOE-2 (thermal, energy and energy cost) and RADIANCE (day/lighting and rendering) computer programs. Plans for the future include the development of links to cost estimating and environmental impact modules, building rating systems, CAD software and electronic product catalogs.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id b654
authors Sacks, R. and Warszawski, A.
year 1997
title A project model for an automated building system: design and planning phases
source Automation in Construction 7 (1) (1997) pp. 21-34
summary The purpose of an automated building system (ABS) is to automatically generate maximum information and the related documents for the preliminary design, detailed design and construction planning of a building project. The ABS under development, described in this paper, includes features such as: representation of project information by a tri-hierarchical project model, step-by-step progress through predefined design and construction planning stages, use of knowledge-based modules, linkage to various data bases, and implementation of intelligent parametric `templates' of building layouts and work assemblies. The main benefits of the system are the high quality of generated information, and the considerable saving of human input needed for this purpose. The project model for the system is described in the paper and various knowledge modules are defined with respect to their input and output. Interface screens and drawings from a prototypical testing of the system are also presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 07ae
authors Sook Lee, Y. and Mi Lee, S.
year 1997
title Analysis of mental maps for ideal apartments to develop and simulate an innovative residential interior space.
source Architectural and Urban Simulation Techniques in Research and Education [3rd EAEA-Conference Proceedings]
summary Even though results of applied research have been ideally expected to be read and used by practitioners, written suggestions have been less persuasive especially, in visual field such as environmental design, architecture, and interior design. Therefore, visualization of space has been frequently considered as an ideal alternative way of suggestions and an effective method to disseminate research results and help decision makers. In order to make the visualized target space very solid and mundane, scientific research process to define the characteristics of the space should be precedent. This presentation consists of two parts : first research part ; second design and simulation part. The purpose of the research was to identify the ideal residential interior characteristics on the basis of people's mental maps for ideal apartments. To achieve this goal, quantitative content analysis was used using an existing data set of floor plans drawn by housewives. 2,215 floorplans were randomly selected among 3,012 floorplans collected through nation-wide housing design competition for ideal residential apartments. 213 selected variables were used to analyze the floorplans. Major contents were the presentational characteristics of mental maps and the characteristics of design preference such as layout, composition, furnishing etc. As a result, current and future possible trends of ideal residence were identified. On the basis of the result, design guidelines were generated. An interior spatial model for small size unit using CAD was developed according to the guidelines. To present it in more effective way, computer simulated images were made using 3DS. This paper is expected to generate the comparison of various methods for presenting research results such as written documents, drawings, simulated images, small scaled model for endoscopy and full scale modeling.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_269496 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002