CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 515

_id f5ee
authors Erhorn, H., De Boer, J. and Dirksmueller, M.
year 1997
title ADELINE, an Integrated Approach to Lighting Simulation
source Proceedings of Right Light 4, 4th European Conference on Energy-Efficient Lighting, pp.99-103
summary The use of daylighting and artificial lighting simulation programs to calculate complex systems and models in the design practice often is impeded by the fact that the operation of these programs, especially the model input, is extremely complicated and time-consuming. Programs that are easier to use generally do not show the calculation capabilities required in practice. A second obstacle arises as the lighting calculations often do not allow any statements regarding the interactions with the energetic and thermal building performance. Both problems are mainly due to a lacking integration of the design tools of other building design practitioners as well as due to insufficient user interfaces. The program package ADELINE (Advanced Daylight and Electric Lighting Integrated New Environment) being available since May 1996 as completely revised version 2.0 presents a promising approach to solve these problems. This contribution describes the approaches and methods used within the international project IEA Task 21 for a further development of the ADELINE system. Aim of this work is a further improvement of user interfaces based on the inclusion of new dialogs and on a portation of the program system from MS-DOS to the Windows NT platform. Additional focus is laid on the use of recent developments in the field of information technology and experiences gained in other projects on integrated building design systems, like for example EU-COMBINE, in a pragmatical way. An integrated building design system with open standardized interfaces is to be achieved inter alia by using ISOSTEP formats, database technologies and a consequent, object-oriented design.
series other
last changed 2003/04/23 15:50

_id diss_marsh
id diss_marsh
authors Marsh, A.J.
year 1997
title Performance Analysis and Conceptual Design
source School of Architecture and Fine Arts, University of Western Australia
summary A significant amount of the research referred to by Manning has been directed into the development of computer software for building simulation and performance analysis. A wide range of computational tools are now available and see relatively widespread use in both research and commercial applications. The focus of development in this area has long been on the accurate simulation of fundamental physical processes, such as the mechanisms of heat flow though materials, turbulent air movement and the inter-reflection of light. The adequate description of boundary conditions for such calculations usually requires a very detailed mathematical model. This has tended to produce tools with a very engineering-oriented and solution-based approach. Whilst becoming increasingly popular amongst building services engineers, there has been a relatively slow response to this technology amongst architects. There are some areas of the world, particularly the UK and Germany, where the use of such tools on larger projects is routine. However, this is almost exclusively during the latter stages of a project and usually for purposes of plant sizing or final design validation. The original conceptual work, building form and the selection of materials being the result of an aesthetic and intuitive process, sometimes based solely on precedent. There is no argument that an experienced designer is capable of producing an excellent design in this way. However, not all building designers are experienced, and even fewer have a complete understanding of the fundamental physical processes involved in building performance. These processes can be complex and often highly inter-related, often even counter-intuitive. It is the central argument of this thesis that the needs of the building designer are quite different from the needs of the building services engineer, and that existing building design and performance analysis tools poorly serve these needs. It will be argued that the extensive quantitative input requirement in such tools acts to produce a psychological separation between the act of design and the act of analysis. At the conceptual stage, building geometry is fluid and subject to constant change, with solid quantitative information relatively scarce. Having to measure off surface areas or search out the emissivity of a particular material forces the designer to think mathematically at a time when they are thinking intuitively. It is, however, at this intuitive stage that the greatest potential exists for performance efficiencies and environmental economies. The right orientation and fenestration choice can halve the airconditioning requirement. Incorporating passive solar elements and natural ventilation pathways can eliminate it altogether. The building form can even be designed to provide shading using its own fabric, without any need for additional structure or applied shading. It is significantly more difficult and costly to retrofit these features at a later stage in a project’s development. If the role of the design tool is to serve the design process, then a new approach is required to accommodate the conceptual phase. This thesis presents a number of ideas on what that approach may be, accompanied by some example software that demonstrates their implementation.
series thesis:PhD
more http://www.squ1.com/site.html
last changed 2003/11/28 07:33

_id 9e13
authors Seward, D.W., Scott, J.N., Dixon, R., Findlay, J.D. and Kinniburgh, H.
year 1997
title The automation of piling rig positioning using satellite GPS
source Automation in Construction 6 (3) (1997) pp. 229-240
summary The paper is divided in two parts. Part one describes the Stent Automatic Pile Positioning and Recording system (SAPPAR) which was launched in November 1994. The system utilises a Trimble satellite global positioning system (GPS) to assist rig drivers in accurately positioning the rig over a pile position without the need for setting out. Advantages of the system include: cost savings by removing the need for site survey staff; faster set-up times over pile positions; increased accuracy - the system can reliably position the rig to within ± 25 mm; removal of problems resulting from damage to setting out pins; constant monitoring of pile position; and Links to CAD for data input and as-built drawings. Part two describes a further development of the system in collaboration with Lancaster University and Casagrande, the Italian rig manufacturer. The aim of the research is to fully automate the final positioning process. This represents one of the first uses of GPS for real-time automation. The system hardware components include: ultra-compact PC104 processor cards for a compact and robust embedded system; minimum sensing on the rig to minimise cost and maximise robustness; and limit sensors to facilitate on-board safety. The control algorithms were developed on a fifth-scale model in the laboratory using an innovative and new approach to the design of model based control systems. The importance of careful consideration of safety issues is stressed and conclusions are drawn based on the early findings from preliminary field trials.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia07_174
id acadia07_174
authors Bontemps, Arnaud; Potvin, André; Demers, Claude
year 2007
title The Dynamics of Physical Ambiences
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 174-181
doi https://doi.org/10.52842/conf.acadia.2007.174
summary This research proposes to support the reading of physical ambiences by the development of a representational technique which compiles, in a numerical interface, two types of data: sensory and filmic. These data are recorded through the use of a portable array equipped with sensors (Potvin 1997, 2002, 2004) as well as the acquisition of Video information of the moving environment. The compilation of information is carried out through a multi-media approach, by means of a program converting the environmental data into dynamic diagrams, as well as the creation of an interactive interface allowing a possible diffusion on the Web. This technique, named APMAP/Video, makes it possible to read out simultaneously spatial and environmental diversity. It is demonstrated through surveys taken at various seasons and time of the day at the new Caisse de dépôt et de placement headquarters in Montreal which is also the corpus for a SSHRC (Social Sciences and Humanities Research Council) research grant on Environmental Adaptability in Architecture (Potvin et al. 2003-2007). This case study shows that the technique can prove of great relevance for POEs (Post Occupancy Evaluation) as well as for assistance in a new design project.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2354
authors Clayden, A. and Szalapaj, P.
year 1997
title Architecture in Landscape: Integrated CAD Environments for Contextually Situated Design
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.q6p
summary This paper explores the future role of a more holistic and integrated approach to the design of architecture in landscape. Many of the design exploration and presentation techniques presently used by particular design professions do not lend themselves to an inherently collaborative design strategy.

Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.

The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.

Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.

The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.

keywords Integrated Design Process, Landscape and Architecture, Shared Environmentsenvironments
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/szalapaj/szalapaj.htm
last changed 2022/06/07 07:50

_id 40d7
authors Dalyrmple, Michael and Gerzso, Michael
year 1998
title Executable Drawings: The Computation of Digital Architecture
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 172-187
doi https://doi.org/10.52842/conf.acadia.1998.172
summary Architectural designs are principally represented by drawings. Usually, each drawing corresponds to one design or aspects of one design. On the other hand, one executable drawing corresponds to a set of designs. These drawings are the same as conventional drawings except that they have computer code or programs embedded in them. A specific design is the result of the computer executing the code in a drawing for a particular set of parameter values. If the parameters are changed, a new design or design variation is produced. With executable drawings, a CAD system is also a program editor. A designer not only designs by drawing but also programming. It fuses two activities: the first, drawing, is basic in architectural practice; and the second, progamming, or specifying the relation of outputs from inputs, is basic in computer system development. A consequence of executable drawings is that architectural form is represented by graphical entities (lines or shapes) as well as computer code or programs. This type of architecture we call digital architecture. Two simple examples are presented: first, the design of a building in terms of an executable drawing of the architects, Sangallo the Younger and Michelangelo, and second, a description of an object oriented implementation of a preliminary prototype of an executable drawing system written in 1997 which computes a simple office layout.
series ACADIA
email
last changed 2022/06/07 07:55

_id b8a4
authors Dani, Tushar H and Gadh, Rajit
year 1997
title Creation of concept shape designs via a virtual reality interface
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 555-563
summary This paper describes an approach for creating concept shape designs in a virtual reality environment--COVIRDS (COnceptual VIRtual Design System. Conceptdesign refers to the ab initio design of a product or part. In concept design, the product details such as shape features and exact dimensions are not rigidly definedand the designer has some freedom in determining the shape and dimensions of the product. Current CAD require the designer to specify shape and dimensions tocreate CAD models of products even though these are probably not necessary at the concept development stage. COVIRDS overcomes these drawbacks by providing abi-modal voice and hand-tracking based user interface to the VR-based CAD modeling environment. This interface allows rapid concept design creation withoutrequiring time consuming shape description and the tedious specifications of exact dimensions.
keywords Concept Shape Design, Virtual Reality Interfaces, Geometric Modeling
series journal paper
last changed 2003/05/15 21:33

_id c906
authors Ekholm, Anders and Fridqvist, Sverker
year 1997
title Design and Modelling in a Computer Integrated Construction Process - The BAS-CAAD Project
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 501-518
summary A new approach to product modelling in a design context is proposed. CAD-software must not only enable product modelling, but must also support product design. This is not fully achieved in the traditional 'enumerative' approach to product modelling. We discuss how product design and modelling can be based on a facetted' approach to information modelling, and how a data model that supports the design process can be based on a framework for system information. The background for our research is the current development in the construction industry towards a computer integrated construction process. A first prerequisite for this is the use of computer based models. Another prerequisite is that CAD-software can support the design of the results of the construction process, including construction works, user organisations, and the production and facility management processes. A third prerequisite is that computer based models are built with standardised concepts and terminology to enable exchange of information between different actors and computer systems during different stages of the construction process. Principles for organising frameworks for user organisation and construction works information are presented in an appendix.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id f7e8
authors Frazer, J.H. and Stephenson, P.
year 1997
title The Groningen Experiment
source Architectural Association Publications, publ. pend.
summary In its first five years, the Architectural Association's Diploma unit II developed the theoretical framework of an alternative generative process, using computer models to compress evolutionary space and time. This led to a prototype that could be demonstrated interactively and the launch on the Internet of an experimental evolutionary environment which attracted global participation, established a dematerialised model. The new phase of the programme has begun to externalise this conceptual model into constructed form, focusing on urban-scale evolution and other historical and natural examples of co-operative and ecologically i integrated development. The approach has been to consider metabolic processes as a way of understanding both the formal development of urban symbiosis and the specific problem of materialization. The city planning department of Groningen commissioned a small working prototype demonstration of a predictive urban computer model. The unit produced an evolving model which explains the transition from the past to the present, and projects future trajectories a "what if" model for generating, exploring and evaluating alternatives. The model mediates in scale, space and time: ; in scale between the urban context and the fine grain of the housing typologies ; in space between the existing fabric of Groningen and specific dwelling units ; in time between the lifestyle within the medieval core and the desires of the citizens of tile next century
series other
last changed 2003/04/23 15:14

_id d2e0
id d2e0
authors Horne M, Hill R, Underwood C
year 1997
title Visualisation of Photovoltaic Clad Buildings
source International Conference on Information Visualisation -IV 97, London, 27-29 August 1997, ISBN 0 8186 8076 8
summary This paper describes a study carried out to investigate the capabilities of computer aided design software for the visualisation of building elevations and detail, with focus on the representation of photovoltaic cells in facade architecture. The development of photovoltaic (PV) technology, converting energy from sunlight into electricity, has resulted in the emergence of PV as a building material. This has generated much debate on the aesthetic implications of PV integrated buildings. PV introduces a particularly complex set of requirements not present in traditional cladding materials. As well as the physical characteristics of the material, there is a need to consider factors such as orientation to the sun, and shadows cast by neighbouring buildings. Architects, engineers, developers, clients and the general public all need to be able to visualise proposed designs, either of new or refurbished buildings. This study investigates both the process and end results of computer visualisation in the context of photovoltaic clad buildings.
keywords Visualisation, PV, CAD evaluation
series other
type normal paper
email
last changed 2006/06/08 22:54

_id b18f
authors Kodaki, K., Nakano, M. and Maeda, S.
year 1997
title Development of the automatic system for pneumatic caisson
source Automation in Construction 6 (3) (1997) pp. 241-255
summary The pneumatic caisson method (NPC) is applicable in any type of ground and permits the ground being excavated to be observed directly, hence it provides a reliable foundation. However, since the working chamber is put under high pressure, high temperature, and high humidity, this method requires robust, experienced workers. However, the aging of skilled workers and the shortage of younger workers have become a social problem in recent years. This is especially serious in foundation work using the pneumatic caisson method which involves hard work under high pressure. In view of the above situation, the Ministry of Construction conducted a joint research with several private companies on technology for automatically removing excavated materials in the pneumatic caisson method as part of its comprehensive technical development project and has come up with a new pneumatic caisson method.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id c59c
authors Kokosalakis, Jen
year 1997
title C AD VANTAGE for Communities, Professionals and Students
source AVOCAAD First International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-01-09] Brussels (Belgium) 10-12 April 1997, pp. 235-254
summary I propose to consider how added value for professionals, and the consumers of their buildings and students of these processes might be attained. Through the vehicle of new technologies including the humble 'CAD' system a fuller collaboration in design decision- making is aided through representation of 3 dimensional design ideas and their comprehension from different 'vantage' points. Thus computing may enhance opportunity for more informed dialogue involving verbal and visual responses between the intentions of the architect and client and promise to open up more of the architectural design process to participation by the building consumers, bringing advantage' to all actors in the design process. More liberated sketching at the system is becoming evident as programmers, and users' skills adapt to the search for more enabling, creative and easier tools, procedures and interfaces freeing responsiveness to consumer wishes. Reflection from clients and practitioners brings hope that a more informed dialogue is enabled through computer supported designing. The beginnings of CAAD support to community groups acts as a facilitator. Contacting and working with community groups follows effective 'Community Development' precedents established in the Liverpool of the sixties; to contact, activate, enable and provide necessary skill supports for community-driven striving for resolution of housing problems. Results of this, ploughed back into CAD teaching for Environmental Planners, brings increased awareness and visualisation of environmental, architectural and human issues and promises to begin a new cycle of more informed participation for citizens, architects, planners and consultants.
series AVOCAAD
last changed 2005/09/09 10:48

_id cb26
authors Koutamanis, Alexander
year 1997
title Digital Architectural Visualization
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.p8n
summary The traditional emphasis of architectural education and practice on spatial visualization has contributed to the development of an overtly visual architectural culture which agrees with our predominantly visual interaction with the built environment. The democratization of computer technologies is changing architectural visualization in two significant ways. The first is that the availability of affordable, powerful digital versions of analogue visual media and of new, complementary techniques is facilitating the application of computer visualization in most aspects of the design and management of the built environment. The second is the opening of a wide and exciting new market for visualization in information systems, for example through interfaces that employ spatial metaphors, which arguably are extensions of the three dimensional structures the architect knows better than other design specialists of today.

The transition from analogue to digital visualization poses questions that encompass the traditional investigation of relationships between geometric representations and built form, as well as issues such as a unified theory of architectural representation, the relationships between analysis and visualization and the role of abstraction in the structure of a representation. In addition to theoretical investigations, the utilization of new possibilities in architectural visualization requires technology and knowledge transfer from areas other than computer science. The integration of such transfers suggests flexible, modular approach which contradicts the holistic, integral principles of computer-aided architectural design.

keywords Visualization
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/koutam/koutam1.htm
last changed 2022/06/07 07:50

_id ab84
authors Li, Thomas S.P. and Will, Barry F.
year 1997
title A Computer-Aided Evaluation Tool for the Visual Aspects in Architectural Design for High-Density and High- Rise Buildings
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 345-356
summary The field of view, the nature of the objects being seen, the distances between the objects and the viewer, daylighting and sunshine are some major factors affecting perceived reactions when viewing through a window. View is one major factor that leads to the satisfaction and comfort of the users inside the building enclosure. While computer technologies are being widely used in the field of architecture, designers still have to use their own intelligence, experience and preferences in judging their designs with respect to the quality of view. This paper introduces an alternative approach to the analysis of views by the use of computers. The prototype of this system and its underlying principles were first introduced in the C A A D R I A 1997 conference. This paper describes the further development of this system where emphasis has been placed on the high- rise and high-density environments. Architects may find themselves facing considerable limitations for improving their designs regarding views out of the building under these environmental conditions. This research permits an interactive real-time response to altering views as the forms and planes of the building are manipulated.
series CAAD Futures
email
last changed 2001/05/27 18:39

_id 2e5a
authors Matsumoto, N. and Seta, S.
year 1997
title A history and application of visual simulation in which perceptual behaviour movement is measured.
source Architectural and Urban Simulation Techniques in Research and Education [3rd EAEA-Conference Proceedings]
summary For our research on perception and judgment, we have developed a new visual simulation system based on the previous system. Here, we report on the development history of our system and on the current research employing it. In 1975, the first visual simulation system was introduced, witch comprised a fiberscope and small-scale models. By manipulating the fiberscope's handles, the subject was able to view the models at eye level. When the pen-size CCD TV camera came out, we immediately embraced it, incorporating it into a computer controlled visual simulation system in 1988. It comprises four elements: operation input, drive control, model shooting, and presentation. This system was easy to operate, and the subject gained an omnidirectional, eye-level image as though walking through the model. In 1995, we began developing a new visual system. We wanted to relate the scale model image directly to perceptual behavior, to make natural background images, and to record human feelings in a non-verbal method. Restructuring the above four elements to meet our equirements and adding two more (background shooting and emotion spectrum analysis), we inally completed the new simulation system in 1996. We are employing this system in streetscape research. Using the emotion spectrum system, we are able to record brain waves. Quantifying the visual effects through these waves, we are analyzing the relation between visual effects and physical elements. Thus, we are presented with a new aspect to study: the relationship between brain waves and changes in the physical environment. We will be studying the relation of brain waves in our sequential analysis of the streetscape.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id c2d8
id c2d8
authors Ozel, Filiz
year 1997
title Representing Design Decisions: An Object Oriented Approach
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 37-49
doi https://doi.org/10.52842/conf.acadia.1997.037
summary During the course of a design project numerous design decisions are made, usually with little attention paid to documenting them or keeping track of them. Systematic documentation and representation of design decisions can not only be invaluable in learning from past design experiences, but can also be good tools in teaching architectural design. By using abstraction and analogy to analyze a design precedent, a problem/sub-problem hierarchy can be built where similarities and differences between the precedent problem and the target problem, goals, constraints and solutions are identified for each level of the hierarchy. Each one of these can be represented as objects in an object oriented programming environment, allowing the construction of a hierarchic structure. This model was incorporated into a computer assisted learning system called "DesignRep" which was created by using Toolbook (Asymetrix Co.) object oriented development environment.
series ACADIA
email
last changed 2022/06/07 08:00

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id d60a
authors Casti, J.C.
year 1997
title Would be Worlds: How simulation is changing the frontiers of science
source John Wiley & Sons, Inc., New York.
summary Five Golden Rules is caviar for the inquiring reader. Anyone who enjoyed solving math problems in high school will be able to follow the author's explanations, even if high school was a long time ago. There is joy here in watching the unfolding of these intricate and beautiful techniques. Casti's gift is to be able to let the nonmathematical reader share in his understanding of the beauty of a good theory.-Christian Science Monitor "[Five Golden Rules] ranges into exotic fields such as game theory (which played a role in the Cuban Missile Crisis) and topology (which explains how to turn a doughnut into a coffee cup, or vice versa). If you'd like to have fun while giving your brain a first-class workout, then check this book out."-San Francisco Examiner "Unlike many popularizations, [this book] is more than a tour d'horizon: it has the power to change the way you think. Merely knowing about the existence of some of these golden rules may spark new, interesting-maybe even revolutionary-ideas in your mind. And what more could you ask from a book?"-New Scientist "This book has meat! It is solid fare, food for thought . . . makes math less forbidding, and much more interesting."-Ben Bova, The Hartford Courant "This book turns math into beauty."-Colorado Daily "John Casti is one of the great science writers of the 1990s."-San Francisco Examiner In the ever-changing world of science, new instruments often lead to momentous discoveries that dramatically transform our understanding. Today, with the aid of a bold new instrument, scientists are embarking on a scientific revolution as profound as that inspired by Galileo's telescope. Out of the bits and bytes of computer memory, researchers are fashioning silicon surrogates of the real world-elaborate "artificial worlds"-that allow them to perform experiments that are too impractical, too costly, or, in some cases, too dangerous to do "in the flesh." From simulated tests of new drugs to models of the birth of planetary systems and galaxies to computerized petri dishes growing digital life forms, these laboratories of the future are the essential tools of a controversial new scientific method. This new method is founded not on direct observation and experiment but on the mapping of the universe from real space into cyberspace. There is a whole new science happening here-the science of simulation. The most exciting territory being mapped by artificial worlds is the exotic new frontier of "complex, adaptive systems." These systems involve living "agents" that continuously change their behavior in ways that make prediction and measurement by the old rules of science impossible-from environmental ecosystems to the system of a marketplace economy. Their exploration represents the horizon for discovery in the twenty-first century, and simulated worlds are charting the course. In Would-Be Worlds, acclaimed author John Casti takes readers on a fascinating excursion through a number of remarkable silicon microworlds and shows us how they are being used to formulate important new theories and to solve a host of practical problems. We visit Tierra, a "computerized terrarium" in which artificial life forms known as biomorphs grow and mutate, revealing new insights into natural selection and evolution. We play a game of Balance of Power, a simulation of the complex forces shaping geopolitics. And we take a drive through TRANSIMS, a model of the city of Albuquerque, New Mexico, to discover the root causes of events like traffic jams and accidents. Along the way, Casti probes the answers to a host of profound questions these "would-be worlds" raise about the new science of simulation. If we can create worlds inside our computers at will, how real can we say they are? Will they unlock the most intractable secrets of our universe? Or will they reveal instead only the laws of an alternate reality? How "real" do these models need to be? And how real can they be? The answers to these questions are likely to change the face of scientific research forever.
series other
last changed 2003/04/23 15:14

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_319107 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002