CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 507

_id c61f
authors Stellingwerff, M.C.
year 1997
title Changing approaches to the Real World
source Published in the book : 'CAAD - Towards New Design Conventions', Technical University of Bialystok, Poland, Edited by Aleksander Asanowicz and Adam Jakimowicz. ISBN83-86272-63-5.
summary Different kinds of design media change the designers approach to the 'real world' and have an important impact on the design process and its results. Six main directions are described and evaluated: design through contemplation, design by means of traditional media, design using desktop computers, design within a virtual reality environment, design with ubiquitous computers and design through augmented interaction. A number of these directions are still developing in unexpected ways, other directions are established and seem to become less interesting for research and in design. The goal of this paper is to value and characterise each above mentioned direction, relate each direction to 'reality', 'mind' and 'media' and place each of them in a historical / futurological sequence.
keywords design, computers, interaction, reality, mind, media, future
series other
email
more http://www.bk.tudelft.nl/media/papers/approaches.html
last changed 1998/07/08 13:08

_id 848a
authors Caneparo, Luca
year 1997
title Shared Virtual Reality for Architectural Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 431-442
summary The paper presents the implementation of a system of Shared Virtual Reality (SVR) in Internet applied to a large- scale project. The applications of SVR to architectural and urban design are presented in the context of a real project, the new railway junction of Porta Susa and the surrounding urban area in the city centre of Turin, Italy. SVR differs from Virtual Reality in that the experience of virtual spaces is no longer individual, but rather shared across the net with other users simultaneously connected. SVR offers an effective approach to Computer Supported Collaborative Work, because it integrates both the communicative tools to improve collaboration and the distributed environment to elaborate information across the networks.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 88f9
authors Carrara, G., Novembri, G., Zorgno, A.M., Brusasco, P.L.
year 1997
title Virtual Studio of Design and Technology on Internet (I) - Educator's approach
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.n2w
summary This paper presents a teaching experience involving students and professors from various universities, in Italy and abroad, which began in 1996 and is still on going. The Virtual Studios on the Internet (VSI) have some features in common with the Teaching Studios planned for the new programme of the faculties of Architecture in Italian universities. These are the definition of a common design theme, and the participation of disciplinary teachers. The greatest difference is in the modes of collaboration, which is achieved through information and communication technologies. The chief result of this is that the various work groups in different places can work and collaborate at the same time: the computer networks provide the means to express, communicate and share the design project.
keywords CAAD, Teaching of architectural design, Shared virtual reality, Virtualdesign studio, Collective intelligence.
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/lvi_i&ii/zorgno.html
last changed 2022/06/07 07:50

_id maver_107
id maver_107
authors Chen, Yan and Maver, Tom W.
year 1997
title Integrating Design Tools within a Human Collaborative Working Context
source International Journal of Construction IT, Vol5, No 2, pp 35-53
summary Integrating design tools has been an important research subject. The work to be reported in this paper differs from many previous efforts in that it not only tackles tool-tool interoperation, but also does so within a human collaborative working context We suggest that design integration support should include not only tool interoperability, but also mechanisms for co-ordinate and control the tool use. We also argue that the higher-level management support should include not only formalised and automated mechanisms, but also semi-automated and even informal mechanisms for human designers to directly interact with each other. Within a collaborative working framework, we'll present a hybrid architecture for tool integration, in which the human designers and the design tools are assumed to be distributed while the management is centralised. In this approach, each design tool is wrapped as an autonomous service provider with its own data store; thus the project design data is physically distributed with the design tools. A meta-data augmented product model, which populates a central meta-data repository serving as a "map" for locating the distributed design objects, is devised to provide a common vocabulary for communications and to assist the management of the distributed resources and activities. A design object broker is used to mediate among the distributed tools, and the central meta-data repository. The reported work has been part of a collaborative design system called virtual studio environment We'll illustrate how the integrated design tools might be used in human design work within the virtual studio environment.
series other
email
last changed 2003/09/03 15:36

_id b8a4
authors Dani, Tushar H and Gadh, Rajit
year 1997
title Creation of concept shape designs via a virtual reality interface
source Computer-Aided Design, Vol. 29 (8) (1997) pp. 555-563
summary This paper describes an approach for creating concept shape designs in a virtual reality environment--COVIRDS (COnceptual VIRtual Design System. Conceptdesign refers to the ab initio design of a product or part. In concept design, the product details such as shape features and exact dimensions are not rigidly definedand the designer has some freedom in determining the shape and dimensions of the product. Current CAD require the designer to specify shape and dimensions tocreate CAD models of products even though these are probably not necessary at the concept development stage. COVIRDS overcomes these drawbacks by providing abi-modal voice and hand-tracking based user interface to the VR-based CAD modeling environment. This interface allows rapid concept design creation withoutrequiring time consuming shape description and the tedious specifications of exact dimensions.
keywords Concept Shape Design, Virtual Reality Interfaces, Geometric Modeling
series journal paper
last changed 2003/05/15 21:33

_id af28
authors Dijkstra, J. and Timmermans, H.J.P.
year 1997
title The Application of Conjoint Measurement as a Dynamic Decision Making Tool in a Virtual Reality Environment
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 757-770
summary This paper describes an innovative aspect of an ongoing research project to develop a virtual reality based conjoint analysis system. Conjoint analysis involves the use of designed hypothetical choice situations to measure subjects' preferences and predict their choice in new situations. Conjoint experiments involve the design and analysis of hypothetical decision tasks. Hypothetical alternatives, called product profiles, are generated and presented to subjects. A virtual reality presentation format has been used to represent these profiles. A profile consists of a virtual environment model and dynamic virtual objects representing the attributes with their respective levels. Conventional conjoint choice models are traditionally based on preference or choice data, not on dynamic decision making aspects. The status of this new approach will be described.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id e22d
authors Emprin, G., Girotto, E., Gotta, A., Livi, T. and Luigia, M.Priore
year 1997
title Virtual Studio of Design and Technology on Internet (II): Student's experience
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.u9k
summary For about a year the members of our group have been working on their degree thesis focused on the project of the new intermodal node of Porta Susa in Turin. The theses are concerned with complex urban and architectural problems in the light of the innovations brought by computers and networks. The experience, up to now, makes us conscious that telematics is, and will be, more and more able to offer new tools and different methodologies to approach architectural design. Collaboration across computer networks has improved our design experience with systematic contributions from various skills and methodologies.

The presentation of our still on-going didactic experience has been subdivided into phases, strictly interrelated The first one, almost over, is concerned with the analysis of the area and the representation of the collected data.

keywords CAAD, Teaching of Architectural Design, Shared Virtual Reality, Virtual Design Studio
series eCAADe
more http://info.tuwien.ac.at/ecaade/proc/lvi_i&ii/gotta.html
last changed 2022/06/07 07:50

_id 7f3b
authors McCall, R. and Johnson, E.
year 1997
title Using argumentative agents to catalyze and support collaboration in design
source Automation in Construction 6 (4) (1997) pp. 299-309
summary Since the 1970s, we have created hypertext systems supporting Rittel's argumentative approach to design. Our efforts aim at improving design by encouraging argumentative, i.e., reasoned-discourse during projects. Despite the intrinsically group-oriented character of the argumentative approach, all of our past prototypes were single-user systems. The project reported here is the first in which we aim at supporting argumentation in group projects. To do this, we augmented our PHIDIAS hyperCAD system to show how argumentative agents can initiate and sustain productive collaboration in design. These agents catalyze collaboration among designers working at different times and/or places by (1) detecting overlaps in the concerns of different participants in a design process, including conflict and support relationships, (2) notifying these people of these overlapping concerns, and (3) enabling a synchronous communication among these people to deal collaboratively with the overlaps. We call these agents argumentative because they represent different personal and professional viewpoints in design and because they promote argumentative discourse among designers about various issues. In addition to identifying and dealing with crucial problems of coordination and collaboration, argumentative agents enable the capture of important design rationale in the form of communication among project participants about these crucial problems.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 51c2
authors Melling, G., Bradley, D.A., McKee, H. and Widden, M.B.
year 1997
title The development of a rapid-prototyping technique for mechatronic-augmented heavy plant
source Automation in Construction 5 (5) (1997) pp. 365-378
summary Telechiric, semi-autonomous and autonomous heavy plant is finding an increasing role in applications such as construction, sub-sea work and decommissioning. There is a need for improved operator interfaces for such plant, and hence for rapid-prototyping tools which link the development of the operator interface with control and operational strategies and with machine geometries. The paper sets out a strategy by which different operator interfaces can be readily evaluated while at the same time generating the requisite information structure for the control of real items of plant. The proposed system is based on the use of interconnected PCs, one to simulate the operator interface and another to provide a kinematic representation of the machine using an appropriate "desk-top reality" environment. This system offers a safe, practical, rapid and cost-effective means of assessing proposed operator interfaces, as well as facilitating the development of machine kinematic structures and the associated operational and control strategies.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 5222
authors Moloney, Jules
year 1999
title Bike-R: Virtual Reality for the Financially Challenged
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 410-413
doi https://doi.org/10.52842/conf.ecaade.1999.410
summary This paper describes a 'low tech' approach to producing interactive virtual environments for the evaluation of design proposals. The aim was to produce a low cost alternative to such expensive installations as CAVE virtual reality systems. The system utilises a library of pre-rendered animation, video and audio files and hence is not reliant on powerful hardware to produce real time simulation. The participant sits astride a bicycle exercise machine and animation is triggered by the pedal revolution. Navigation is achieved by steering along and around the streets of the animated design. This project builds on the work of Desmond Hii. ( Hii, 1997) The innovations are the bicycle interface and the application to urban scale simulation.
keywords Virtual, Design, Interface, Urban
series eCAADe
email
last changed 2022/06/07 07:58

_id 3e1c
authors Mortenson, M.E.
year 1997
title Geometric Modeling
source New York: Wiley Computer Publishing
summary A comprehensive, up-to-date presentation of all the indispensable core concepts of geometric modeling. Now completely updated to reflect the most recent developments in the field, Geometric Modeling clearly presents and compares all the important mathematical approaches to modeling curves, surfaces, and solids, and shows how to shape and assemble these elements into more complex models. Its thorough coverage also includes the concomitant geometric processing necessary, e.g., the computation of intersections, offsets, and fillets. Written in a style that is virtually free of the jargon of special applications, this unique book focuses on the essence of geometric modeling and treats it as a discipline in its own right. This integrated approach allows the reader to focus on the principles and logic of geometric modeling without requiring background knowledge of CAD/CAM, computer graphics, or computer programming. Supported by more than 300 illustrations, Geometric Modeling appeals to the reader's visual and intuitive skills in a way that makes understanding the more abstract concepts much easier. This new edition features a host of new application areas, including topology, special effects in cinematography, the design and control of type fonts, and virtual reality, as well as numerous application examples. For computer graphics specialists, application designers and developers, scientific programmers, and advanced students, Geometric Modeling, Second Edition will serve as a complete and invaluable guide to the entire field.
series other
last changed 2003/04/23 15:14

_id e1ce
authors Navon, R. and Retik, A.
year 1997
title Programming construction robots using virtual reality techniques
source Automation in Construction 5 (5) (1997) pp. 393-406
summary The paper describes a new approach to programming construction robots, using virtual reality (VR) techniques. The new approach is needed because both traditional and new methods of programming industrial robots, described in the paper, have specific drawbacks, which become crucial in the construction arena. This is because of the ever-changing environment of construction and its nature, a prototype or one-of-a-kind, industry. As a result, construction robots need much more programming than their industrial counterparts, which is labor intensive using known methods and is not compensated by mass production. The VR approach is demonstrated with the Multi-Purpose Interior Finishing Robot (MPIR) for a masonry task, accompanied by a detailed description of the VR-based programming model and approach.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.1999.169
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id eea1
authors Achten, Henri
year 1997
title Generic Representations - Typical Design without the Use of Types
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 117-133
summary The building type is a (knowledge) structure that is both recognised as a constitutive cognitive element of human thought and as a constitutive computational element in CAAD systems. Questions that seem unresolved up to now about computational approaches to building types are the relationship between the various instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed functional use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called 'prototypes') face problems clarifying these questions. It is proposed in this research not to focus on a definition of 'type,' but rather to investigate the role of knowledge connected to building types in the design process. The basic proposition is that the graphic representations used to represent the state of the design object throughout the design process can be used as a medium to encode knowledge of the building type. This proposition claims that graphic representations consistently encode the things they represent, that it is possible to derive the knowledge content of graphic representations, and that there is enough diversity within graphic representations to support a design process of a building belonging to a type. In order to substantiate these claims, it is necessary to analyse graphic representations. In the research work, an approach based on the notion of 'graphic units' is developed. The graphic unit is defined and the analysis of graphic representations on the basis of the graphic unit is demonstrated. This analysis brings forward the knowledge content of single graphic representations. Such knowledge content is declarative knowledge. The graphic unit also provides the means to articulate the transition from one graphic representation to another graphic representation. Such transitions encode procedural knowledge. The principles of a sequence of generic representations are discussed and it is demonstrated how a particular type - the office building type - is implemented in the theoretical work. Computational work on implementation part of a sequence of generic representations of the office building type is discussed. The paper ends with a summary and future work.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id 1fb3
authors Akin, O., Cumming, M., Shealey, M. and Tuncer, B.
year 1997
title An electronic design assistance tool for case-based representation of designs
source Automation in Construction 6 (4) (1997) pp. 265-274
summary In precedent based design, solutions to problems are developed by drawing from an understanding of landmark designs. Many of the key design operations in this mode are similar to the functionalities present in case-based reasoning systems: case matching, case adapting, and case representation. It is clear that a rich case-base, encoding all major product types in a design domain would be the centerpiece of such an approach. EDAT (Electronic Design Assistance Tool) is intended to assist in precedent based design in the studio with the potential of expansion into the office setting. EDAT has been designed using object oriented system development methods. EDAT was used in a design studio at Carnegie Mellon University, during Spring 1996.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia03_022
id acadia03_022
authors Anders, Peter
year 2003
title Towards Comprehensive Space: A context for the programming/design of cybrids
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 161-171
doi https://doi.org/10.52842/conf.acadia.2003.161
summary Cybrids have been presented as mixed realities: spatial, architectural compositions comprised of physical and cyberspaces (Anders 1997). In order to create a rigorous approach to the design of architectural cybrids, this paper offers a model for programming their spaces. Other than accepting cyberspaces as part of architecture’s domain, this approach is not radical. Indeed, many parts of program development resemble those of conventional practice. However, the proposition that cyberspaces should be integrated with material structures requires that their relationship be developed from the outset of a project. Hence, this paper provides a method for their integration from the project’s earliest stages, the establishment of its program. This study for an actual project, the Planetary Collegium, describes a distributed campus comprising buildings and cyberspaces in various locales across the globe. The programming for these cybrids merges them within a comprehensive space consisting not only of the physical and cyberspaces, but also in the cognitive spaces of its designers and users.
series ACADIA
email
last changed 2022/06/07 07:54

_id 0c91
authors Asanowicz, Aleksander
year 1997
title Computer - Tool vs. Medium
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
doi https://doi.org/10.52842/conf.ecaade.1997.x.b2e
summary We have arrived an important juncture in the history of computing in our profession: This history is long enough to reveal clear trends in the use of computing, but not long to institutionalize them. As computers peremate every area of architecture - from design and construction documents to project administration and site supervision - can “virtual practice” be far behind? In the old days, there were basically two ways of architects working. Under stress. Or under lots more stress. Over time, someone forwarded the radical motion that the job could be easier, you could actually get more work done. Architects still have been looking for ways to produce more work in less time. They need a more productive work environment. The ideal environment would integrate man and machine (computer) in total harmony. As more and more architects and firms invest more and more time, money, and effort into particular ways of using computers, these practices will become resistant to change. Now is the time to decide if computing is developing the way we think it should. Enabled and vastly accelerated by technology, and driven by imperatives for cost efficiency, flexibility, and responsiveness, work in the design sector is changing in every respect. It is stands to reason that architects must change too - on every level - not only by expanding the scope of their design concerns, but by altering design process. Very often we can read, that the recent new technologies, the availability of computers and software, imply that use of CAAD software in design office is growing enormously and computers really have changed the production of contract documents in architectural offices.
keywords Computers, CAAD, Cyberreal, Design, Interactive, Medium, Sketches, Tools, Virtual Reality
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/asan/asanowic.htm
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_486509 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002