CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 441

_id dba1
authors Hirschberg, Urs and Wenz, Florian
year 2000
title Phase(x) - memetic engineering for architecture
source Automation in Construction 9 (4) (2000) pp. 387-392
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/1997. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This set-up allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived. While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes2 that developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, which is not limited to teaching CAAD. Since this paper was first published in 1997, we have continued to explore the issues described here in various projects3 together with a growing number of other interested institutions worldwide. While leaving the paper essentially in its original form, we added a section at the end, in which we outline some of these recent developments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2006_506
id 2006_506
authors Fioravanti, Antonio and Rinaldo Rustico
year 2006
title x-House game - A Space for simulating a Collaborative Working Environment in Architecture
doi https://doi.org/10.52842/conf.ecaade.2006.506
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 506-511
summary The research consists of the set up of a game simulating a e Collaborative Working Environment – CWE – in Architectural Design. The use of a game is particularly useful as it makes it possible to simplify the complex terms of the problem and, through the game itself, makes it easier to study knowledge engineering tools, communication protocols and the areas of an ICT implementation of a general model of collaborative design. In the following several characteristics of the game are given (also with reference to other games) such as; participating actors (Wix 1997), the “pieces” (construction components) used, the modular space employed, the PDWs/SDW dialectics, the screenshot of the interface prototype, the score.
keywords Architectural Design; CWE; Game; Representation Model; KBs
series eCAADe
email
last changed 2022/06/07 07:50

_id c557
authors Fuchs, W. and Martinico, A.
year 1997
title The V.C.net--A digital study in architecture
source Automation in Construction 6 (4) (1997) pp. 335-339
summary The V.C.net project is an Internet-based educational and communication tool for the architectural community. Its goal is to encourage students from architecture programs across the country and around the world to examine problems and collaborate in the exploration of ideas through the World Wide Web. The central concept of the project involves the creation of a simulated, vital urban environment constructed from various forms of digital data. This `virtual city' will be comprised of projects executed by students of architecture and urban design in US and abroad. Projects will be proposed for specific sites and will reflect real-world questions as they are mirrored in the virtual world. The city exists as a heuristic tool and is not intended as a copy of any existing human habitat. The ultimate goal of the project is to create a dynamic platform to study the interrelationship of various forces effecting urban development: architecture, planning, civil engineering, economics, social sciences, etc. The project originates at the School of Architecture of the University of Detroit Mercy and is intended to be truly interdisciplinary.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id e373
authors Johnson, Robert E. and Clayton, Mark
year 1997
title The Impact of Information Technology in Design and Construction: The Owner's Perspective
doi https://doi.org/10.52842/conf.acadia.1997.229
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 229-241
summary This paper reports on findings of a November 1996 exploratory survey of architecture-engineering clients (Fortune 500 corporate facility managers). This research investigated how the practices of corporate facility managers are being influenced by rapid changes in information technology. The conceptual model that served as a guide for this research hypothesized that information technology acts as both an enabler (that is, information technology provides an effective mechanism for managers to implement desired changes) as well as a source of innovation (that is, new information technology innovations create new facility management opportunities). The underlying assumption of this research is that information technology is evolving from a tool that incrementally improves "back-office" productivity to an essential component of strategic positioning that may alter the basic economics, organizational structure and operational practices of facility management organizations and their interactions with service providers (architects, engineers and constructors). The paper concludes with a discussion of researchable issues.
series ACADIA
email
last changed 2022/06/07 07:52

_id 2c17
authors Junge, Richard and Liebich, Thomas
year 1997
title Product Data Model for Interoperability in an Distributed Environment
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 571-589
summary This paper belongs to a suite of three interrelated papers. The two others are 'The VEGA Platform' and 'A Dynamic Product Model'. These two companion papers are also based on the VEGA project. The ESPRIT project VEGA (Virtual Enterprises using Groupware tools and distributed Architectures) has the objective to develop IT solutions enabling virtual enterprises, especially in the domain of architectural design and building engineering. VEGA shall give answers to many questions of what is needed for enabling such virtual enterprise from the IT side. The questions range from technologies for networks, communication between distributed applications, control, management of information flow to implementation and model architectures to allow distribution of information in the virtual enterprises. This paper is focused on the product model aspect of VEGA. So far modeling experts have followed a more or less centralized architecture (central or central with 4 satellites'). Is this also the architecture for the envisaged goal? What is the architecture for such a distributed model following the paradigm of modeling the , natural human' way of doing business? What is the architecture enabling most effective the filtering and translation in the communication process. Today there is some experience with 'bulk data' of the document exchange type. What is with incremental information (not data) exchange? Incremental on demand only the really needed information not a whole document. The paper is structured into three parts. First there is description of the modeling history or background. the second a vision of interoperability in an distributed environment from the users coming from architectural design and building engineering view point. Third is a description of work undertaken by the authors in previous project forming the direct basis for the VEGA model. Finally a short description of the VEGA project, especially the VEGA model architecture.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 8e5c
authors Khemlani, Lachmi and Kalay, Yehuda E.
year 1997
title An Integrated Computing Environment for Collaborative, Multi-Disciplinary Building Design
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 389-416
summary The increasing complexity of the built environment requires that more knowledge and experience be brought to bear on its design, construction and maintenance. The commensurate growth of knowledge in the participating disciplines-architecture, engineering, construction management, facilities management, and others-has tended to diversify each one into many sub-specializations. The resulting fragmentation of the design-built-use process is potentially detrimental to the overall quality of built environment. An efficient system of collaboration between all the specialist participants is needed to offset the effects of fragmentation. It is here that computers, with their ubiquitous presence in all disciplines, can serve as a medium of communication and form the basis of a collaborative, multi- disciplinary design environment. This paper describes the ongoing research on the development of such an integrated computing environment that will provide the basis for design and evaluation tools ranging across the many building-related disciplines. The bulk of the discussion will focus on the problem of a building representation that can be shared by all these disciplines, which, we posit, lies at the core of such an environment. We discuss the criteria that characterize this shared building representation, and present our solution to the problem. The proposed model has been adapted from geometric modeling, and addresses explicitly the difficult Problem of generality versus completeness of the represented information. The other components of the integrated environment that are under development are also described. The paper concludes with some implementation details and a brief look at two evaluation tools that use the proposed building representation for their task.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 1f62
authors Kiliccote, Han
year 1997
title A standards processing framework
source Carnegie Mellon University, Pittsburgh
summary Civil engineers create and employ a very large number of design standards, especially in the United States. Designing using such a large number of design standards is a tedious, laborious, and difficult task. One major research task in Computer-Aided Engineering (CAE) is the development of software tools that assist in the usage of design standards during the design process. This dissertation, a standards processing framework is presented. It is an agent-based approach to providing computer-aided support for using design standards. In this framework, modules, such as standards processing servers, are treated as agents communicating using a defined communication language. One immediate advantage of this architecture is that it allows the incorporation of a broad, powerful set of representation for use in modeling design standards.
series thesis:PhD
email
more http://han.ices.cmu.edu
last changed 2003/02/12 22:37

_id 25a2
authors MacCallum, C. and Hanna, R.
year 1997
title DEFLECT: A Computer Aided Learning Package for Teaching Structural Design - Phase Two
doi https://doi.org/10.52842/conf.ecaade.1997.x.f6j
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper reports on Phase Two of a SHEFC funded project jointly carried out by the Department of Civil, Structural and Environmental Engineering, University of Paisley, the Mackintosh School of Architecture, and Lamp Software. The project aims to build a computer-assisted learning package on the response of structures to load. The software will be used as an interactive teaching tool for both architectural and engineering students.

The package has four levels: Beginners (Level 1), Intermediate (Level 2) and Advanced (Levels 3 and 4). The first two levels have been completed after continuous feedback from both institutions. Level 1 is geared towards architectural and engineering students to help them understand structural behaviour of building components, such as deflection. Level 2 is a graphical editor that enables students to draw precisely the structure of their designs, investigate the deflection of structural members and identify areas of tension and compression. Levels 3 and 4 are a design tool which is aimed at architectural and civil engineering students where they can design and analyse realistic structures by choosing structural members from a library, and specify materials and multiple loads.

Phase One of DEFLECT was presented in the 14th ECAADE conference , which was held at the University of Lund, Sweden. In Phase Two, the range of structural examples was expanded to include typological classics. This was accompanied by additional teaching and learning material. The package was enlarged to include bending moment and shear force diagrams, tapered and curved members, and additional materials such as glass.

series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/maccull/maccull.htm
last changed 2022/06/07 07:50

_id diss_marsh
id diss_marsh
authors Marsh, A.J.
year 1997
title Performance Analysis and Conceptual Design
source School of Architecture and Fine Arts, University of Western Australia
summary A significant amount of the research referred to by Manning has been directed into the development of computer software for building simulation and performance analysis. A wide range of computational tools are now available and see relatively widespread use in both research and commercial applications. The focus of development in this area has long been on the accurate simulation of fundamental physical processes, such as the mechanisms of heat flow though materials, turbulent air movement and the inter-reflection of light. The adequate description of boundary conditions for such calculations usually requires a very detailed mathematical model. This has tended to produce tools with a very engineering-oriented and solution-based approach. Whilst becoming increasingly popular amongst building services engineers, there has been a relatively slow response to this technology amongst architects. There are some areas of the world, particularly the UK and Germany, where the use of such tools on larger projects is routine. However, this is almost exclusively during the latter stages of a project and usually for purposes of plant sizing or final design validation. The original conceptual work, building form and the selection of materials being the result of an aesthetic and intuitive process, sometimes based solely on precedent. There is no argument that an experienced designer is capable of producing an excellent design in this way. However, not all building designers are experienced, and even fewer have a complete understanding of the fundamental physical processes involved in building performance. These processes can be complex and often highly inter-related, often even counter-intuitive. It is the central argument of this thesis that the needs of the building designer are quite different from the needs of the building services engineer, and that existing building design and performance analysis tools poorly serve these needs. It will be argued that the extensive quantitative input requirement in such tools acts to produce a psychological separation between the act of design and the act of analysis. At the conceptual stage, building geometry is fluid and subject to constant change, with solid quantitative information relatively scarce. Having to measure off surface areas or search out the emissivity of a particular material forces the designer to think mathematically at a time when they are thinking intuitively. It is, however, at this intuitive stage that the greatest potential exists for performance efficiencies and environmental economies. The right orientation and fenestration choice can halve the airconditioning requirement. Incorporating passive solar elements and natural ventilation pathways can eliminate it altogether. The building form can even be designed to provide shading using its own fabric, without any need for additional structure or applied shading. It is significantly more difficult and costly to retrofit these features at a later stage in a project’s development. If the role of the design tool is to serve the design process, then a new approach is required to accommodate the conceptual phase. This thesis presents a number of ideas on what that approach may be, accompanied by some example software that demonstrates their implementation.
series thesis:PhD
more http://www.squ1.com/site.html
last changed 2003/11/28 07:33

_id 2c71
authors Maver, T.W.
year 1997
title Some Successes in the Environmental Training of Architectural Students
source Proceedings of ENTREE 97, UETP-EEE, 155-165
summary Thomas W Maver, holds the Chair of Computer Aided Design in the Department of Architecture and Building Science at the University of Strathclyde in Glasgow. His research group ABACUS has been engaged in the application of Information Technology to architectural teaching and practice for some 25 years and he was instrumental in setting up the Energy Design Advice Scheme which now operates in four regions in the UK. Currently he is Vice-Dean in the Faculty of Engineering.
series other
email
last changed 2003/04/16 12:25

_id 8804
authors QaQish, R. and Hanna, R.
year 1997
title A World-wide Questionnaire Survey on the Use of Computers in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1997.x.c8o
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary The paper reports on a study which examines the impact on architectural education needs arising from the changes brought about by the implications of CAD teaching/learning (CAI/CAL). The findings reflect the views of fifty-one (51) architecture schools through a world-wide questionnaire survey conducted in mid 1996. The survey was structured to cover four continents represented by seven countries, namely the USA, UK, Israel, Australia, Canada, Sweden and the Netherlands. Structurally the main findings of this study are summarised under five areas, namely: 1) General Information, 2) Program of Study (curriculum) and CAD course, 3) CAD Laboratories: Hardware, Software, 4) Departmental Current and Future Policies, 5) Multi-media and Virtual Reality. Principally, there were three main objectives for using the computers survey. Firstly, to accommodate a prevalent comprehension of CAD integration into the curriculum of architecture schools world wide. Secondly, to identify the main key factors that control the extent of association between CAD and architectural curriculum. Thirdly, to identify common trends of CAD teaching in Architecture schools world-wide and across the seven countries to establish whether there are any association between them. Several variables and factors that were found to have an impact on AE were examined, namely: the response rate, the conventional methods users and the CAD methods users amongst students, CAD course employment in the curriculum, age of CAD employment, the role of CAD in the curriculum, CAD training time in the Curriculum, CAD laboratories/Hardware & Software, computing staff and technicians, department policies, Multi-Media (MM) and Virtual-Reality (VR). The statistical analysis of the study revealed significant findings, one of which indicates that 35% of the total population of students at the surveyed architecture schools are reported as being CAD users. Out of the 51 architecture schools who participated in this survey, 47 have introduced CAD courses into the curriculum. The impact of CAD on the curriculum was noted to be significant in several areas, namely: architectural design, architectural presentation, structural engineering, facilities management, thesis project and urban design. The top five CAD packages found to be most highly used across universities were, namely, AutoCAD (46), 3DStudio (34), Microstation (23), Form Z (17), ArchiCAD (17). The findings of this study suggest some effective and efficient future directions in adopting some form of effective CAD strategies in the curriculum of architecture. The study also serves as an evaluation tool for computing teaching in the design studio and the curriculum.

 

keywords CAD Integration, Employment, Users and Effectiveness
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/qaqish/qaqish.htm
last changed 2022/06/07 07:50

_id diss_ruhl
id diss_ruhl
authors Ruhl, Volker R.
year 1997
title Computer-Aided Design and Manufacturing of Complex Shaped Concrete Formwork
source Doctor of Design Thesis, Graduate School of Design, Harvard University, Cambridge, MA
summary The research presented in this thesis challenges the appropriateness of existing, conventional forming practices in the building construction industry--both in situ or in prefabrication--for building concrete "freeforms," as they are characterized by impracticality and limitations in achieved geometric/formal quality. The author's theory proposes the application of alternative, non-traditional construction methods derived from the integration of information technology, in the form of Computer-Aided Design (CAD), Engineering (CAE) and Manufacturing (CAM), into the concrete tooling and placing process. This concept relies on a descriptive shape model of a physically non-existent building element which serves as a central database containing all the geometric data necessary to completely and accurately inform design development activities as well as the construction process. For this purpose, the thesis orients itself on existing, functioning models in manufacturing engineering and explores the broad spectrum of computer-aided manufacturing techniques applied in this industry. A two-phase, combined method study is applied to support the theory. Part I introduces the phenomenon of "complexity" in the architectural field, defines the goal of the thesis research and gives examples of complex shape. It also presents the two analyzed technologies: concrete tooling and automation technology. For both, it establishes terminology, classifications, gives insight into the state-of-the-art, and describes limitations. For concrete tooling it develops a set of quality criteria. Part II develops a theory in the form of a series of proposed "non-traditional" forming processes and concepts that are derived through a synthesis of state-of-the-art automation with current concrete forming and placing techniques, and describes them in varying depth, in both text and graphics, on the basis of their geometric versatility and their appropriateness for the proposed task. Emphasis is given to the newly emerging and most promising Solid Freeform Fabrication processes, and within this area, to laser-curing technology. The feasibility of using computer-aided formwork design, and computer-aided formwork fabrication in today's standard building practices is evaluated for this particular technology on the basis of case-studies. Performance in the categories of process, material, product, lead time and economy is analyzed over the complete tooling cycle and is compared to the performance of existing, conventional forming systems for steel, wood, plywood veneer and glassfiber reinforced plastic; value s added to the construction process and/or to the formwork product through information technology are pointed out and become part of the evaluation. For this purpose, an analytical framework was developed for testing the performance of various Solid Freeform Fabrication processes as well as the "sensitivity," or the impact of various influencing processes and/or product parameters on lead time and economy. This tool allows us to make various suggestions for optimization as well as to formulate recommendations and guidelines for the implementation of this technology. The primary objective of this research is to offer architects and engineers unprecedented independence from planar, orthogonal building geometry, in the realization of design ideas and/or design requirements for concrete structures and/or their components. The interplay between process-oriented design and innovative implementation technology may ultimately lead to an architecture conceived on a different level of complexity, with an extended form-vocabulary and of high quality.
series thesis:PhD
last changed 2005/09/09 12:58

_id 65d0
authors Tsai, Daniel E.
year 1997
title The Palladio Web Museum - A Heterogeneous Database of Architecture and History
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 655-662
summary This paper presents the overall information system architecture and the approaches used for creating the Palladio Virtual Museum - a heterogeneous database of history and architecture. Creating a virtual museum is treated as an information system engineering task. The World Wide Web (the Web) is used as the open access platform for both presentation and input. Client-server database transaction technology is used to provide a concurrent real-time system for consumers (visitors) and producers of information. The system is a test bed for structuring, searching, and presenting historical, architectural, spatial information.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 6e46
authors Wenz, Florian and Hirschberg, Urs
year 1997
title Phase(x) - Memetic Engineering for ArchitectureArchitecture
doi https://doi.org/10.52842/conf.ecaade.1997.x.b1e
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/97. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This setup allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived.

While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes hat developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, that is not limited to teaching CAAD.

keywords memetic process, collaborative creative work, collective authorship, caad education
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/wenz/wenz.htm
last changed 2022/06/07 07:50

_id ecaade2012_86
id ecaade2012_86
authors QaQish ; Ra’Ed K.
year 2012
title 15 Years of CAD Teaching in Jordan: How Much Has Been Accomplished? A Comparative Analysis of the Use of CAD in Architectural Schools Between 1997 and 2012
doi https://doi.org/10.52842/conf.ecaade.2012.2.023
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 23-32
wos WOS:000330320600001
summary The paper reports on a study which examines the evolution in architectural education trends arising from the changes brought about by both Socioeconomic Factors and the implications of CAAD in the last 15 years in Jordanian universities. The findings reflect the views of thirteen (13) architecture faculties/schools through a nation-wide questionnaire survey conducted in the spring of 2012. The survey was structured to cover both private and public universities in Jordan, represented by faculties of engineering, architecture and design. Structurally, the main fi ndings of this study are summarized under six areas, namely: 1) General Students’ Information, 2) Demographic and Socioeconomic Factors, 3) CAD Competences amongst both Staff and Students, 4) Program of Study and CAD Courses, 5) Overall Satisfaction of CAD Courses and Training , 6) CAD and Social Networks. The majority of student respondents were females (144) (53.3%). The top laptop brands used were HP (17%) Toshiba (12.2%) and Dell (7.8%). The CAD packages found to be most highly used throughout universities were AutoCAD, 3D Max, Sketch-up, and Adobe Suite. The importance of new technologies, electronic book, and the social network aspects in enhancing CAD and 3D modeling software integration with the design studio was affi rmed yet no relationship to the gender was noted.
keywords CAD Integration, Socioeconomic Factors
series eCAADe
email
last changed 2022/06/07 07:58

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id 0e8f
authors Alavalkama, I. and Siitonen, P.
year 1997
title Developing a new endoscopy laboratory with digital tools.
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary Tampere School of Architecture had to leave its old down-town building and move to the TU Tampere university campus in Hervanta, 10 km away. In this process, the 20 years old endoscopic system "The Urban Simulator" was one of the victims. Old mechanical parts and especially the original home-built microcomputer system were too old to compete with modern computer-aided methods. A new endoscopical system is now under construction, using all of the 20-year experience, new technical components and computers for camera control and picture processing. Real-material modelling is used together with computer-aided planning and visualization methods taking the best from both sides.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id acadia23_v1_136
id acadia23_v1_136
authors Alima, Natalia
year 2023
title InterspeciesForms
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 136-143.
summary The hybridization of architectural, biological and robotic agencies Situated in the field of architectural biodesign, InterspeciesForms explores a closer relationship between the fungus Pleurotus ostreatus and the designer in the creation of form. The intention of hybridizing mycelia’s agency of growth with architectural design intention is to generate novel, non-indexical crossbred designed outcomes that evolve preconceived notions of architectural form. Mycelium are threadlike fibrous root systems made up of hyphae, that form the vegetative part of a fungus (Jones 2020). Known as the hackers of the wood wide web (Simard 1997) mycelia form complex symbiotic relationships with other species that inhabit our earth. Michael Lim states “Fungi redefine resourcefulness, collaboration, resilience and symbiosis” (Lim 2022, p. 14). When wandering around the forest to connect with other species or searching for food, fungi form elaborate and entangled networks by spreading their hyphal tips. Shown in Figure 1, this living labyrinth results in the aesthetic formation of an intricate web. Due to the organisms ability to determine the most effective direction of growth, communicate with its surrounding ecosystem, and connect with other species, fungi are indeed an intelligent species with a unique aesthetic that must not be ignored. In drawing on these concepts, I refer to the organism’s ability to search for, tangle, and digest its surroundings as ‘mycelia agency of growth’. It is this specific behavioral characteristic that is the focus of this research, with which I, as the architect, set out to co-create and hybridize with.
series ACADIA
type project
email
last changed 2024/04/17 13:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_689493 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002