CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 511

_id debf
authors Bertol, D.
year 1997
title Designing Digital Space - An Architect's Guide to Virtual Reality
source John Wiley & Sons, New York
summary The first in-depth book on virtual reality (VR) aimed specifically at architecture and design professionals, Designing Digital Space steers you skillfully through the learning curve of this exciting new technology. Beginning with a historical overview of the evolution of architectural representations, this unique resource explains what VR is, how it is being applied today, and how it promises to revolutionize not only the design process, but the form and function of the built environment itself. Vividly illustrating how VR fits alongside traditional methods of architectural representation, this comprehensive guide prepares you to make optimum practical use of this powerful interactive tool, and embrace the new role of the architect in a virtually designed world. Offers in-depth coverage of the virtual universe-data representation and information management, static and dynamic worlds, tracking and visual display systems, control devices, and more. Examines a wide range of current VR architectural applications, from walkthroughs, simulations, and evaluations to reconstructions and networked environments Includes insightful essays by leading VR developers covering some of today's most innovative projects Integrates VR into the historical framework of architectural development, with detailed sections on the past, present, and future Features a dazzling array of virtual world images and sequential displays Explores the potential impact of digital architecture on the built environment of the future
series other
last changed 2003/04/23 15:14

_id 6a37
authors Fowler, Thomas and Muller, Brook
year 2002
title Physical and Digital Media Strategies For Exploring ‘Imagined’ Realities of Space, Skin and Light
doi https://doi.org/10.52842/conf.acadia.2002.013
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 13-23
summary This paper will discuss an unconventional methodology for using physical and digital media strategies ina tightly structured framework for the integration of Environmental Control Systems (ECS) principles intoa third year design studio. An interchangeable use of digital media and physical material enabledarchitectural explorations of rich tactile and luminous engagement.The principles that provide the foundation for integrative strategies between a design studio and buildingtechnology course spring from the Bauhaus tradition where a systematic approach to craftsmanship andvisual perception is emphasized. Focusing particularly on color, light, texture and materials, Josef Albersexplored the assemblage of found objects, transforming these materials into unexpected dynamiccompositions. Moholy-Nagy developed a technique called the photogram or camera-less photograph torecord the temporal movements of light. Wassily Kandinsky developed a method of analytical drawingthat breaks a still life composition into diagrammatic forces to express tension and geometry. Theseschematic diagrams provide a method for students to examine and analyze the implications of elementplacements in space (Bermudez, Neiman 1997). Gyorgy Kepes's Language of Vision provides a primerfor learning basic design principles. Kepes argued that the perception of a visual image needs aprocess of organization. According to Kepes, the experience of an image is "a creative act ofintegration". All of these principles provide the framework for the studio investigation.The quarter started with a series of intense short workshops that used an interchangeable use of digitaland physical media to focus on ECS topics such as day lighting, electric lighting, and skin vocabulary tolead students to consider these components as part of their form-making inspiration.In integrating ECS components with the design studio, an nine-step methodology was established toprovide students with a compelling and tangible framework for design:Examples of student work will be presented for the two times this course was offered (2001/02) to showhow exercises were linked to allow for a clear design progression.
series ACADIA
email
last changed 2022/06/07 07:51

_id 63bb
authors Kokosalakis, J., Brown, G. and Moorhouse, J.
year 1997
title Incremental Reflective Learning and Innovative Practice in Electronic Design Media
doi https://doi.org/10.52842/conf.ecaade.1997.x.u1q
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary This paper discusses the impact of a continuously developing CAAD learning strategy, describing in detail a few of these principles, and considering their dynamic impact through deeper more lasting learning, feeding a substantial intensification in the application of Architectural Designing with Computers, changing design methods with interesting analytical and creative results.Aspects of the CAAD teaching discussed include extended collaboration between CAAD and design tutors in defining learning outcomes and tutoring the students’ application of CAAD to design projects, inclusion of CAAD within traditional interim reviews and feedback for design projects and bringing emphasis on conceptual principles, structuring the model and simple programming into earlier stages of the teaching programme and a simple excursion into programming. Studio project examples indicate the interplay between teaching, learning and achievement. Some evidence is explored in greater detail. from the "Interstitial Layers" project utilising the appropriateness of CAAD to store and switch the visibility of spatial data in endless permutations and extensive combinations for mapping, analysing and strategically projecting patterns of city centre activities, fabric and space. Students’ demonstrate a dynamic command of CAAD: as a vehicle for conceptual design, a device to analytically review, criticise and modify the design, as a means to explain design ideas to tutors and to develop and detail final building designs. Reciprocal valuing of quality CAAD achievement between architecture students and staff is seen to be contributing to involvement and motivation, reinforcing striving for equality of achievement. Reference to a further strand of the new methodology considers the impact of tutoring based in researcher findings from video case study precedents of architects practising creative design through use of computers, on a more open, effective development of the architecture students’ own designing processes, culminating in interesting design work.
keywords Incremental Learning, Understanding, CAAD-Design Approaches, Retention, Feedback, Review, Urban Spatial Forms, Spatial Analysis, "Interstitial Layers", Patterns, Conceptual Electronic Designing, Creative Innovation, Equality and Sharing
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/kokosa/jmup01.htm
last changed 2022/06/07 07:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cc51
authors Schnier, T. and Gero, J.S
year 1997
title Dominant and recessive genes in evolutionary systems applied to spatial reasoning
source A. Sattar (Ed.), Advanced Topics in Artificial Intelligence: 10th Australian Joint Conference on Artificial Intelligence AI97 Proceedings, Springer, Heidelberg, pp. 127-136
summary Learning genetic representation has been shown to be a useful tool in evolutionary computation. It can reduce the time required to find solutions and it allows the search process to be biased towards more desirable solutions. Learn-ing genetic representation involves the bottom-up creation of evolved genes from either original (basic) genes or from other evolved genes and the introduction of those into the population. The evolved genes effectively protect combinations of genes that have been found useful from being disturbed by the genetic operations (cross-over, mutation). However, this protection can rapidly lead to situations where evolved genes in-terlock in such a way that few or no genetic operations are possible on some genotypes. To prevent the interlocking previous implementations only allow the creation of evolved genes from genes that are direct neighbours on the genotype and therefore form continuous blocks. In this paper it is shown that the notion of dominant and recessive genes can be used to remove this limitation. Using more than one gene at a single location makes it possible to construct genetic operations that can separate interlocking evolved genes. This allows the use of non-continuous evolved genes with only minimal violations of the protection of evolved genes from those operations. As an example, this paper shows how evolved genes with dominant and re-cessive genes can be used to learn features from a set of Mondrian paintings. The representation can then be used to create new designs that contain features of the examples. The Mondrian paintings can be coded as a tree, where every node represents a rectangle division, with values for direction, position, line-width and colour. The modified evolutionary operations allow the system to cre-ate non-continuous evolved genes, for example associate two divisions with thin lines, without specifying other values. Analysis of the behaviour of the system shows that about one in ten genes is a dominant/recessive gene pair. This shows that while dominant and recessive genes are important to allow the use of non-continuous evolved genes, they do not occur often enough to seriously violate the protection of evolved genes from genetic operations.
keywords Evolutionary Systems, Genetic Representations
series other
email
last changed 2003/04/06 07:24

_id 6537
authors Wang, W. and Gero, J.S.
year 1997
title Sequence-based prediction in the conceptual design of bridges
source ASCE Journal of Computing in Civil Engineering 11(1): 37-43
summary This paper explores the application of a machine learning technique in knowledge support systems in civil engineering design. It presents a sequence-based prediction method for engineering design and demonstrates its utility in the conceptual design of bridges. The basic idea of sequence-based prediction is that the most recent numbers of similar design cases are used in predicting the characteristics of the next design and more recent cases are given stronger influence on decision making in the new design situation than older ones. This paper develops a model of sequence-based prediction and carries out a number of experiments using it. It is then applide to a set of standard data and the results of using a sequence-based prediction method are compared with other methods. The empirical results show the potential applications of the method in engineering design.
keywords Machine Learning, Time
series journal paper
email
last changed 2003/05/15 21:45

_id sigradi2006_e131c
id sigradi2006_e131c
authors Ataman, Osman
year 2006
title Toward New Wall Systems: Lighter, Stronger, Versatile
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 248-253
summary Recent developments in digital technologies and smart materials have created new opportunities and are suggesting significant changes in the way we design and build architecture. Traditionally, however, there has always been a gap between the new technologies and their applications into other areas. Even though, most technological innovations hold the promise to transform the building industry and the architecture within, and although, there have been some limited attempts in this area recently; to date architecture has failed to utilize the vast amount of accumulated technological knowledge and innovations to significantly transform the industry. Consequently, the applications of new technologies to architecture remain remote and inadequate. One of the main reasons of this problem is economical. Architecture is still seen and operated as a sub-service to the Construction industry and it does not seem to be feasible to apply recent innovations in Building Technology area. Another reason lies at the heart of architectural education. Architectural education does not follow technological innovations (Watson 1997), and that “design and technology issues are trivialized by their segregation from one another” (Fernandez 2004). The final reason is practicality and this one is partially related to the previous reasons. The history of architecture is full of visions for revolutionizing building technology, ideas that failed to achieve commercial practicality. Although, there have been some adaptations in this area recently, the improvements in architecture reflect only incremental progress, not the significant discoveries needed to transform the industry. However, architectural innovations and movements have often been generated by the advances of building materials, such as the impact of steel in the last and reinforced concrete in this century. There have been some scattered attempts of the creation of new materials and systems but currently they are mainly used for limited remote applications and mostly for aesthetic purposes. We believe a new architectural material class is needed which will merge digital and material technologies, embedded in architectural spaces and play a significant role in the way we use and experience architecture. As a principle element of architecture, technology has allowed for the wall to become an increasingly dynamic component of the built environment. The traditional connotations and objectives related to the wall are being redefined: static becomes fluid, opaque becomes transparent, barrier becomes filter and boundary becomes borderless. Combining smart materials, intelligent systems, engineering, and art can create a component that does not just support and define but significantly enhances the architectural space. This paper presents an ongoing research project about the development of new class of architectural wall system by incorporating distributed sensors and macroelectronics directly into the building environment. This type of composite, which is a representative example of an even broader class of smart architectural material, has the potential to change the design and function of an architectural structure or living environment. As of today, this kind of composite does not exist. Once completed, this will be the first technology on its own. We believe this study will lay the fundamental groundwork for a new paradigm in surface engineering that may be of considerable significance in architecture, building and construction industry, and materials science.
keywords Digital; Material; Wall; Electronics
series SIGRADI
email
last changed 2016/03/10 09:47

_id 7ebf
authors Clark, G. and Mehta, P.
year 1997
title Artificial intelligence and networking in integrated building management systems
source Automation in Construction 6 (5-6) (1997) pp. 481-498
summary In recent years the emphasis has moved towards integrating all a building's systems via centralised building management systems (BMS). To provide a more intelligent approach to the facility management, safety and energy control in building management systems (IBMS), this paper proposes a methodology for integrating the data within a BMS via a single multi-media networking technology and providing the BMS with artificial intelligence (AI) through the use of knowledge-based systems (KBS) technology. By means of artificial intelligence, the system is capable of assessing, diagnosing and suggesting the best solution. This paper outlines how AI techniques can enhance the control of HVAC systems for occupant comfort and efficient running costs based on occupancy prediction. Also load control and load balancing are investigated. Instead of just using pre-programmed load priorities, this work has investigated the use of a dynamic system of priorities which are based on many factors such as area usage, occupancy, time of day and real time environmental conditions. This control strategy which is based on a set of rules running on the central control system, makes use of information gathered from outstations throughout the building and communicated via the building's data-bus.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 20ff
id 20ff
authors Derix, Christian
year 2004
title Building a Synthetic Cognizer
source Design Computation Cognition conference 2004, MIT
summary Understanding ‘space’ as a structured and dynamic system can provide us with insight into the central concept in the architectural discourse that so far has proven to withstand theoretical framing (McLuhan 1964). The basis for this theoretical assumption is that space is not a void left by solid matter but instead an emergent quality of action and interaction between individuals and groups with a physical environment (Hillier 1996). In this way it can be described as a parallel distributed system, a self-organising entity. Extrapolating from Luhmann’s theory of social systems (Luhmann 1984), a spatial system is autonomous from its progenitors, people, but remains intangible to a human observer due to its abstract nature and therefore has to be analysed by computed entities, synthetic cognisers, with the capacity to perceive. This poster shows an attempt to use another complex system, a distributed connected algorithm based on Kohonen’s self-organising feature maps – SOM (Kohonen 1997), as a “perceptual aid” for creating geometric mappings of these spatial systems that will shed light on our understanding of space by not representing space through our usual mechanics but by constructing artificial spatial cognisers with abilities to make spatial representations of their own. This allows us to be shown novel representations that can help us to see new differences and similarities in spatial configurations.
keywords architectural design, neural networks, cognition, representation
series other
type poster
email
more http://www.springer.com/computer/ai/book/978-1-4020-2392-7
last changed 2012/09/17 21:13

_id 07d8
authors Garza, J.M. de la and Howitt, I.
year 1998
title Wireless communication and computing at the construction jobsite
source Automation in Construction 7 (4) (1998) pp. 327-347
summary For many years, the walkie-talkie has been synonymous with the construction industry. During jobsite project execution, there are three variables which can either hinder or facilitate successful results, namely, quality, quantity, and timing of information. Wireless data communications technology is capable of delivering just-in-time information within the `last mile' between the trailer and a desired location on the jobsite. This paper reports on a study which surveyed information needs at the jobsite, emerging wireless data communications technology, and assessed the extent to which wireless data technology can fulfill the information needs of the jobsite [J.M. de la Garza, I. Howitt, Wireless communication and computing at the jobsite, Research Report 136-11, Construction Industry Institute, Austin, TX, 1997]. We have organized jobsite information needs into the following ten categories: (a) requests for information, (b) materials management, (c) equipment management, (d) cost management, (e) schedule and means and methods, (f) jobsite record keeping, (g) submittals, (h) safety, (i) QC/QA, and (k) future trends. Each category was analyzed in terms of its appropriateness to take advantage of wireless technology. The four formats considered to transmit information wirelessly were: (a) live voice, (b) live video, (c) batched data, and (d) live data. Current wireless communication technology has been classified into the following five classes: (a) circuit-switched wireless data systems, (b) packet-switched wireless data systems––this class was further subdivided into specialized mobile radio systems and cellular digital packet data systems, (c) wireless local area networks, (d) paging systems, and (e) satellite-based data communications. A primer for wireless communications covering both fundamental and advanced communications concepts has also been included to enable a better understanding of the issues involved in making trade-offs while configuring a wireless jobsite communication system. The example presented in this paper shows how a contractor can define a subset of information needs by choosing from those already articulated herein and determine if a given wireless technology should even be considered as a viable way of meeting the information needs that such company has.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia18_226
id acadia18_226
authors Glynn, Ruairi; Abramovic, Vasilija; Overvelde, Johannes T. B.
year 2018
title Edge of Chaos. Towards intelligent architecture through distributed control systems based on Cellular Automata.
doi https://doi.org/10.52842/conf.acadia.2018.226
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 226-231
summary From the “Edge of Chaos”, a mathematical space discovered by computer scientist Christopher Langton (1997), compelling behaviors originate that exhibit both degrees of organization and instability creating a continuous dance between order and chaos. This paper presents a project intended to make this complex theory tangible through an interactive installation based on metamaterial research which demonstrates emergent behavior using Cellular Automata (CA) techniques, illustrated through sound, light and motion. We present a multi-sensory narrative approach that encourages playful exploration and contemplation on perhaps the biggest questions of how life could emerge from the disorder of the universe.

We argue a way of creating intelligent architecture, not through classical Artificial Intelligence (AI), but rather through Artificial Life (ALife), embracing the aesthetic emergent possibilities that can spontaneously arise from this approach. In order to make these ideas of emergent life more tangible we present this paper in four integrated parts, namely: narrative, material, hardware and computation. The Edge of Chaos installation is an explicit realization of creating emergent systems and translating them into an architectural design. Our results demonstrate the effectiveness of a custom CA for maximizing aesthetic impact while minimizing the live time of architectural kinetic elements.

keywords work in progress, complexity, responsive architecture, distributed computing, emergence, installation, interactive architecture, cellular automata
series ACADIA
type paper
email
last changed 2022/06/07 07:51

_id diss_kim
id diss_kim
authors Kim, S.
year 1997
title Version Management in Computer-Aided Architectural Design
source Harvard University, Cambridge, Massachusetts
summary This thesis introduces the requirements for version support in a computer-aided architectural design system which seeks to support the work of designers in the early stages of design. It addresses the problems of current computer-aided design systems when they are used for conceptual design. Perceiving the implications of mature technology, this thesis provides a model of version management. The model makes use of object-oriented technology to link the design process and the design artifacts in a dynamic manner, providing a powerful tool for conceptual design. By capturing design versions, and keeping track of multiple design sessions, designers will be able to reuse design ideas, and check on the progress of current design while the interruption of design thinking is minimized. The creation of the design history is considered to be the creation of the version history. By being able to navigate and modify the design history, the issues of design reuse, alternative designs, and the preservation of design information can be facilitated. This thesis presents a working prototype based on the version management model.
series thesis:PhD
more http://archmedia.yonsei.ac.kr/pdf/
last changed 2003/11/28 07:38

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id e82c
authors Mahdavi, A., Mathew, P. and Wong, N.H.
year 1997
title A Homology-Based Mapping Approach to Concurrent Multi-Domain Performance Evaluation
doi https://doi.org/10.52842/conf.caadria.1997.237
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 237-246
summary Over the past several years there have been a number of research efforts to develop integrated computational tools which seek to effectively support concurrent design and performance evaluation. In prior research, we have argued that elegant and effective solutions for concurrent, integrated design and simulation support systems can be found if the potentially existing structural homologies in general (configurational) and domain-specific (technical) building representations are creatively exploited. We present the use of such structural homologies to facilitate seamless and dynamic communication between a general building representation and multiple performance simulation modules – specifically, a thermal analysis and an air-flow simulation module. As a proof of concept, we demonstrate a computational design environment (SEMPER) that dynamically (and autonomously) links an object-oriented space-based design model, with structurally homologous object models of various simulation routines.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ascaad2014_003
id ascaad2014_003
authors Parlac, Vera
year 2014
title Surface Dynamics: From dynamic surface to agile spaces
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 39-48
summary Behavior, adaptation and responsiveness are characteristics of live organisms; architecture on the other hand is structurally, materially and functionally constructed. With the shift from ‘mechanical’ towards ‘organic’ paradigm (Mae-Wan Ho, 1997) attitude towards architectural adaptation, behavior and performance is shifting as well. This change is altering a system of reference and conceptual basis for architecture by suggesting the integration of dynamics – dynamics that don’t address kinetic movement only but include flows of energies, material and information. This paper presents an ongoing research into kinetic material system with the focus on non-mechanical actuation (shape memory alloy) and the structural and material behavior. It proposes an adaptive surface capable of altering its shape and forming small occupiable spaces that respond to external and internal influences and flows of information. The adaptive structure is developed as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate the behavior of the larger system. The design approach is driven by an interest in adaptive systems in nature and material variability (structural and functional) of naturally constructed materials. The broader goal of the research is to test the scale at which shape memory alloy can be employed as an actuator of dynamic architectural surfaces and to speculate on and explore the capacity of active and responsive systems to produce adaptable surfaces that can form occupiable spaces and with that, added functionalities in architectural and urban environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ebcf
authors Williams, R.L. and Kuriger, R.J.
year 1997
title Kinematics, statics, and dexterity of planar active structure modules
source Automation in Construction 7 (1) (1997) pp. 77-89
summary Construction automation could benefit from long-reach, lightweight, dexterous, strong, and stiff manipulators constructed from active structures (variable geometry trusses). Unfortunately, the few systems actually built to date have not delivered these desired characteristics (two such systems are heavy, slow, not dexterous enough, and too flexible) due to lack of unified, integrated, optimized design. This article presents a first step for integrated kinematic, static, dynamic, and control constraints in structural optimization. Workspace area, end-link angle, extension ratio, dexterity, and static loading are all considered in comparisons of basic planar active structure modules which could be used as joints in 3D active structures for construction automation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 34b8
authors Batie, D.L.
year 1997
title The incorporation of construction history in architectural history: the HISTCON interactive computer program
source Automation in Construction 6 (4) (1997) pp. 275-285
summary Current teaching methods for architectural history seldom embrace building technology as an essential component of study. Accepting the premise that architectural history is a fundamental component to the overall architectural learning environment, it is argued that the study of construction history will further enhance student knowledge. This hypothesis created an opportunity to investigate how the study of construction history could be incorporated to strengthen present teaching methods. Strategies for teaching architectural history were analyzed with the determination that an incorporation of educational instructional design applications using object-oriented programming and hypermedia provided the optimal solution. This evaluation led to the development of the HISTCON interactive, multimedia educational computer program. Used initially to teach 19th Century iron and steel construction history, the composition of the program provides the mechanism to test the significance of construction history in the study of architectural history. Future development of the program will provide a method to illustrate construction history throughout the history of architecture. The study of architectural history, using a construction oriented methodology, is shown to be positively correlated to increased understanding of architectural components relevant to architectural history and building construction.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id aa2f
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 1997
title An Intelligent Assistant for the Architectural Design Studio
doi https://doi.org/10.52842/conf.ecaade.1997.x.a3a
source Challenges of the Future [15th eCAADe Conference Proceedings / ISBN 0-9523687-3-0] Vienna (Austria) 17-20 September 1997
summary It seems by now fairly accepted by many researchers in the field of the Computer Aided Design that the way to realise support tools for the architectural design is by means of the realisation of Intelligent Assistants. This kind of computer program, based on the Knowledge Engineering and machine learning, finds his power and effectiveness by the Knowledge Base on which it is based. Moreover, it appears evident that the modalities of dialogue among architects and operators in the field of building industry, are inadequate to support the exchange of information that the use of these tools requires.

In fact, many efforts at international level are in progress to define tools in order to make easier the multiple exchange of information in different fields of building design. Concerning this point, protocol and ontology of structured information interchanges constitute the first steps in this sense, e.g. those under standardisation by ISO (STEP), PDT models and Esprit project ToCEE. To model these problems it has brought forth a new research field: the collaborative design one, an evolution of distributed work and concurrent design.

The CAAD Laboratory of Dipartimento di Architettura and Urbanistica per l'Ingegneria has carried out a software prototype, KAAD, based on Knowledge Engineering in the fields of hospital building and of building for aged people. This software is composed by an Interface, a Knowledge Base, a Database and Constraints. The Knowledge Base has been codified by using the formal structure of frames, and has been implemented by the Lisp language. All the elements of KB are objects

keywords Design Studio
series eCAADe
email
more http://info.tuwien.ac.at/ecaade/proc/carrara/carrara.htm
last changed 2022/06/07 07:50

_id c1ad
authors Cheng, Nancy Yen-wen
year 1997
title Teaching CAD with Language Learning Methods
doi https://doi.org/10.52842/conf.acadia.1997.173
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 173-188
summary By looking at computer aided design as design communication we can use pedagogical methods from the well-developed discipline of language learning. Language learning breaks down a complex field into attainable steps, showing how learning strategies and attitudes can enhance mastery. Balancing the linguistic emphases of organizational analysis, communicative intent and contextual application can address different learning styles. Guiding students in learning approaches from language study will equip them to deal with constantly changing technology.

From overall curriculum planning to specific exercises, language study provides a model for building a learner-centered education. Educating students about the learning process, such as the variety of metacognitive, cognitive and social/affective strategies can improve learning. At an introductory level, providing a conceptual framework and enhancing resource-finding, brainstorming and coping abilities can lead to threshold competence. Using kit-of-parts problems helps students to focus on technique and content in successive steps, with mimetic and generative work appealing to different learning styles.

Practicing learning strategies on realistic projects hones the ability to connect concepts to actual situations, drawing on resource-usage, task management, and problem management skills. Including collaborative aspects in these projects provides the motivation of a real audience and while linking academic study to practical concerns. Examples from architectural education illustrate how the approach can be implemented.

series ACADIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_829669 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002