CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures
Hits 1 to 20 of 139
Reformat results as: short short into frame detailed detailed into frame
1.Import design from other CAD tools.
2.Assemble an architecture structure from a library of pre-built blocks and geometry primitives dynamically created by user.
3.Export the design interactively in VRML format back to the library for Internet browsing.
The geometry primitives include polygon, sphere, cone, cylinder and cube. The pre-built blocks consist of fundamental architecture models which have been categorized with architectural related style, physical properties and environmental attributes. Upon a user’s request, the tool or the composer, has the ability to communicate with the library which indeed is a back-end distributed client-server database engine. The user may specify any combination of properties and attributes in the composer which will instantly bring up all matching 3-dimensional objects through the database engine. The database is designed in relational model and comes from the work of another research group.
Within contemporary digital environments, there are increasing opportunities to explore and evaluate design proposals which integrate both architectural and landscape aspects. The production of integrated design solutions exploring buildings and their surrounding context is now possible through the design development of shared 3-D and 4-D virtual environments, in which buildings no longer float in space.
The scope of landscape design has expanded through the application of techniques such as GIS allowing interpretations that include social, economic and environmental dimensions. In architecture, for example, object-oriented CAD environments now make it feasible to integrate conventional modelling techniques with analytical evaluations such as energy calculations and lighting simulations. These were all ambitions of architects and landscape designers in the 70s when computer power restricted the successful implementation of these ideas. Instead, the commercial trend at that time moved towards isolated specialist design tools in particular areas. Prior to recent innovations in computing, the closely related disciplines of architecture and landscape have been separated through the unnecessary development, in our view, of their own symbolic representations, and the subsequent computer applications. This has led to an unnatural separation between what were once closely related disciplines.
Significant increases in the performance of computers are now making it possible to move on from symbolic representations towards more contextual and meaningful representations. For example, the application of realistic materials textures to CAD-generated building models can then be linked to energy calculations using the chosen materials. It is now possible for a tree to look like a tree, to have leaves and even to be botanicaly identifiable. The building and landscape can be rendered from a common database of digital samples taken from the real world. The complete model may be viewed in a more meaningful way either through stills or animation, or better still, through a total simulation of the lifecycle of the design proposal. The model may also be used to explore environmental/energy considerations and changes in the balance between the building and its context most immediately through the growth simulation of vegetation but also as part of a larger planning model.
The Internet has a key role to play in facilitating this emerging collaborative design process. Design professionals are now able via the net to work on a shared model and to explore and test designs through the development of VRML, JAVA, whiteboarding and video conferencing. The end product may potentially be something that can be more easily viewed by the client/user. The ideas presented in this paper form the basis for the development of a dual course in landscape and architecture. This will create new teaching opportunities for exploring the design of buildings and sites through the shared development of a common computer model.
For this reason, and because not always is arranged the best possible documentation, we consider that the majority of vectorisations they exist in the market don’t plenty satisfied our needs as teaching staff of graphic expression and CAD, althoug we can always be using the same systems of projection or codified representations, it is imposed a lot of times to interpret acording the context the different signs and graphic registers used.
We know experimental applications that go beyond, they even arrive to generate a 3D model from a lifted hand draw that represents three orthogonal projections of it, but it isn’t less certain that its utility is restricted to fields very specialised and the option that we propose, there is not knowledge at least to us that it exist; commercially speaking.
Our porpose has been to develope a symple metedology of vectorisation but adapted to the special idiosyncrasy of the needs of an architecture student that with frequency for his formation requires to generate with CAD models 2D and 3D of architectural projects from the information contented in magazines, and with them create several formas analysis.
The most important difference in the matter to other systems is the interactivity of the procedure that let personify the exit file, even the wide diversity of graphic registers that it exist in the entrance, being the user only once has to identify and interpret the signs to detect, and then the process is realized automatically to any plant of the building or equivalent projection.
The aim of linking Planning and CAD systems is to display in real-time the progress of engineering projects, according its planning and control through their 2D or 3D architectural and engineering models.
This paper describes and illustrates, the development of an innovative software, that, in this way, links data from any Planning software to the popular AutoCAD producing colored 2D or 3D models of the multiple activities of an engineering project according the foreseen or real stages - not yet done, being done, completely done.
Same application examples to different engineering projects through some screen-shots of this software use, are illustrated.
But a very rigorous design is not always enough to start restoration work. The real state that presents a historical building could have been modified substantially from its original state due to previous interventions, wars, seismic movements, erosion, biological aggressions or any other historical event.
So, it is necessary to join CAAD tasks with a simulation of the historical process suffered by the building. Historical data and ancient cartography must be the basis of all the CAAD works, and the quality of the computer 3D model can be established comparing it with the original available maps.
This paper explains the CAAD works and the intervention proposals for the restoration of the City Walls of Hondarribia, a small Spanish village placed in the frontier between Spain and France. These Renaissance bastioned walls were partially destroyed throughout many wars with France. The exact knowledge of their original trace and dimensions only is possible comparing the real CAD models with the plans that exist in the Spanish Military Archives since the XVIth. century.
The digital store and index of all the historical information, their comparison with real photographs of the city walls, the creation of photo realistic images with the intervention proposals, and the influence of the structural repairs in the final project will be explained in the CAAD context.
In Sweden representatives from the construction and building management industry have put forward a research and development program called: "IT-Bygg#2 2002 - Implementation". It aims at making IT the vehicle for decreasing the building costs and at the same time getting better quality and efficiency out of the industry.
The presented strategy is based on a seminar with some of the most experienced researchers, developers and practitioners of CAD in Sweden. The activities were recorded and annotated, analyzed and put together afterwards.
The proposal in brief is that object oriented distributed CAD is to be used in the long perspective. It will need to be based on international standards such as STEP and it will take at least another 5 years to get established.
Meanwhile something temporary has to be used. Pragmatically a "de facto standard" on formats has to be accepted and implemented. To support new users of IT all software in use in the country will be analyzed, described and published for a national platform for IT-communication within the construction industry.
Finally the question is discussed "How can architect schools then contribute to IT being implemented within the housing sector at a regional or national level?" Some ideas are presented: Creating the good example, better support for the customer, sharing the holistic concept of the project with all actors, taking part in an integrated education process and international collaboration like AVOCAAD and ECAADE.
For more results click below: