CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 36

_id d60a
authors Casti, J.C.
year 1997
title Would be Worlds: How simulation is changing the frontiers of science
source John Wiley & Sons, Inc., New York.
summary Five Golden Rules is caviar for the inquiring reader. Anyone who enjoyed solving math problems in high school will be able to follow the author's explanations, even if high school was a long time ago. There is joy here in watching the unfolding of these intricate and beautiful techniques. Casti's gift is to be able to let the nonmathematical reader share in his understanding of the beauty of a good theory.-Christian Science Monitor "[Five Golden Rules] ranges into exotic fields such as game theory (which played a role in the Cuban Missile Crisis) and topology (which explains how to turn a doughnut into a coffee cup, or vice versa). If you'd like to have fun while giving your brain a first-class workout, then check this book out."-San Francisco Examiner "Unlike many popularizations, [this book] is more than a tour d'horizon: it has the power to change the way you think. Merely knowing about the existence of some of these golden rules may spark new, interesting-maybe even revolutionary-ideas in your mind. And what more could you ask from a book?"-New Scientist "This book has meat! It is solid fare, food for thought . . . makes math less forbidding, and much more interesting."-Ben Bova, The Hartford Courant "This book turns math into beauty."-Colorado Daily "John Casti is one of the great science writers of the 1990s."-San Francisco Examiner In the ever-changing world of science, new instruments often lead to momentous discoveries that dramatically transform our understanding. Today, with the aid of a bold new instrument, scientists are embarking on a scientific revolution as profound as that inspired by Galileo's telescope. Out of the bits and bytes of computer memory, researchers are fashioning silicon surrogates of the real world-elaborate "artificial worlds"-that allow them to perform experiments that are too impractical, too costly, or, in some cases, too dangerous to do "in the flesh." From simulated tests of new drugs to models of the birth of planetary systems and galaxies to computerized petri dishes growing digital life forms, these laboratories of the future are the essential tools of a controversial new scientific method. This new method is founded not on direct observation and experiment but on the mapping of the universe from real space into cyberspace. There is a whole new science happening here-the science of simulation. The most exciting territory being mapped by artificial worlds is the exotic new frontier of "complex, adaptive systems." These systems involve living "agents" that continuously change their behavior in ways that make prediction and measurement by the old rules of science impossible-from environmental ecosystems to the system of a marketplace economy. Their exploration represents the horizon for discovery in the twenty-first century, and simulated worlds are charting the course. In Would-Be Worlds, acclaimed author John Casti takes readers on a fascinating excursion through a number of remarkable silicon microworlds and shows us how they are being used to formulate important new theories and to solve a host of practical problems. We visit Tierra, a "computerized terrarium" in which artificial life forms known as biomorphs grow and mutate, revealing new insights into natural selection and evolution. We play a game of Balance of Power, a simulation of the complex forces shaping geopolitics. And we take a drive through TRANSIMS, a model of the city of Albuquerque, New Mexico, to discover the root causes of events like traffic jams and accidents. Along the way, Casti probes the answers to a host of profound questions these "would-be worlds" raise about the new science of simulation. If we can create worlds inside our computers at will, how real can we say they are? Will they unlock the most intractable secrets of our universe? Or will they reveal instead only the laws of an alternate reality? How "real" do these models need to be? And how real can they be? The answers to these questions are likely to change the face of scientific research forever.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4062
authors Flanagan Robert and Shannon, Kelly
year 1998
title Digital Studio Confronts Tradition
doi https://doi.org/10.52842/conf.ecaade.1998.065
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 65-71
summary This is a record of a collaborative teaching effort of two architect/educators, each contributing theoretical components to the educational process necessary for the development of an urban housing strategy vis à vis an integrated digital/judgment effort. Twenty graduate architecture students were involved in this ‘computer design studio’. The focus of the studio was the 1997 Otis Elevator Housing Design Competition. A prerequisite introductory computer class was required for participation in this studio. Two distinct analysis and design methodologies were introduced; one concentrating on the formal tectonic aspects of architecture and the other highlighting the multiplicity, and often competing, forces shaping the built reality. The summary offered at the conclusion of this document both supports and questions the direction of the class as a whole and further classifies the relative success and failures of the individual student initiatives. In some cases, the computer simply facilitated (and occasionally hindered) progress. In the most opportunistic examples, the computer undoubtedly changed both the process and the consequence of the design effort.  
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:51

_id dcd2
authors Salama, A.
year 1997
title New Trends in Architectural Education: Designing the Design Studio
source The Anglo-Egyptian Bookstore, Cairo Egypt
summary New Trends in Architectural Education presents a wide range of innovative concepts and practical methods for teaching architectural design, together with examples of different studio teaching. It traces the roots of architectural education, several disparate ideas, and strategies of design teaching practices including the Ecole Des Beaux-Arts and the Bauhaus. This book offers a comparative analysis of contemporary trends that are committed to shaping and identifying studio objectives and processes. It explores different aspects of studio teaching and what impact they have on attitudes, skills, methods, and tools of designers. New Trends in Architectural Education calls for a fresh look at design education in architecture, where the author proposes an approach within which architectural educators can envision and evaluate the needs of future architects and the type of education that satisfies those needs.
series other
last changed 2003/04/23 15:14

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id eea1
authors Achten, Henri
year 1997
title Generic Representations - Typical Design without the Use of Types
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 117-133
summary The building type is a (knowledge) structure that is both recognised as a constitutive cognitive element of human thought and as a constitutive computational element in CAAD systems. Questions that seem unresolved up to now about computational approaches to building types are the relationship between the various instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed functional use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called 'prototypes') face problems clarifying these questions. It is proposed in this research not to focus on a definition of 'type,' but rather to investigate the role of knowledge connected to building types in the design process. The basic proposition is that the graphic representations used to represent the state of the design object throughout the design process can be used as a medium to encode knowledge of the building type. This proposition claims that graphic representations consistently encode the things they represent, that it is possible to derive the knowledge content of graphic representations, and that there is enough diversity within graphic representations to support a design process of a building belonging to a type. In order to substantiate these claims, it is necessary to analyse graphic representations. In the research work, an approach based on the notion of 'graphic units' is developed. The graphic unit is defined and the analysis of graphic representations on the basis of the graphic unit is demonstrated. This analysis brings forward the knowledge content of single graphic representations. Such knowledge content is declarative knowledge. The graphic unit also provides the means to articulate the transition from one graphic representation to another graphic representation. Such transitions encode procedural knowledge. The principles of a sequence of generic representations are discussed and it is demonstrated how a particular type - the office building type - is implemented in the theoretical work. Computational work on implementation part of a sequence of generic representations of the office building type is discussed. The paper ends with a summary and future work.
series CAAD Futures
email
last changed 2003/11/21 15:15

_id acadia03_022
id acadia03_022
authors Anders, Peter
year 2003
title Towards Comprehensive Space: A context for the programming/design of cybrids
doi https://doi.org/10.52842/conf.acadia.2003.161
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 161-171
summary Cybrids have been presented as mixed realities: spatial, architectural compositions comprised of physical and cyberspaces (Anders 1997). In order to create a rigorous approach to the design of architectural cybrids, this paper offers a model for programming their spaces. Other than accepting cyberspaces as part of architecture’s domain, this approach is not radical. Indeed, many parts of program development resemble those of conventional practice. However, the proposition that cyberspaces should be integrated with material structures requires that their relationship be developed from the outset of a project. Hence, this paper provides a method for their integration from the project’s earliest stages, the establishment of its program. This study for an actual project, the Planetary Collegium, describes a distributed campus comprising buildings and cyberspaces in various locales across the globe. The programming for these cybrids merges them within a comprehensive space consisting not only of the physical and cyberspaces, but also in the cognitive spaces of its designers and users.
series ACADIA
email
last changed 2022/06/07 07:54

_id a35a
authors Arponen, Matti
year 2002
title From 2D Base Map To 3D City Model
source UMDS '02 Proceedings, Prague (Czech Republic) 2-4 October 2002, I.17-I.28
summary Since 1997 Helsinki City Survey Division has proceeded in experimenting and in developing the methods for converting and supplementing current digital 2D base maps in the scale 1:500 to a 3D city model. Actually since 1986 project areas have been produced in 3D for city planning and construction projects, but working with the whole map database started in 1997 because of customer demands and competitive 3D projects. 3D map database needs new data modelling and structures, map update processes need new working orders and the draftsmen need to learn a new profession; the 3D modeller. Laser-scanning and digital photogrammetry have been used in collecting 3D information on the map objects. During the years 1999-2000 laser-scanning experiments covering 45 km2 have been carried out utilizing the Swedish TopEye system. Simultaneous digital photography produces material for orto photo mosaics. These have been applied in mapping out dated map features and in vectorizing 3D buildings manually, semi automatically and automatically. In modelling we use TerraScan, TerraPhoto and TerraModeler sw, which are developed in Finland. The 3D city model project is at the same time partially a software development project. An accuracy and feasibility study was also completed and will be shortly presented. The three scales of 3D models are also presented in this paper. Some new 3D products and some usage of 3D city models in practice will be demonstrated in the actual presentation.
keywords 3D City modeling
series other
email
more www.udms.net
last changed 2003/11/21 15:16

_id 76ba
authors Bermudez, Julio
year 1997
title Cyber(Inter)Sections: Looking into the Real Impact of The Virtual in the Architectural Profession
source Proceedings of the Symposium on Architectural Design Education: Intersecting Perspectives, Identities and Approaches. Minneapolis, MN: College of Architecture & Landscape Architecture, pp. 57-63
summary As both the skepticism and 'hype' surrounding cyberspace vanish under the weight of ever increasing power, demand, and use of information, the architectural discipline must prepare for significant changes. For cyberspace is remorselessly cutting through the dearest structures, rituals, roles, and modes of production in our profession. Yet, this section is not just a detached cut through the existing tissues of the discipline. Rather it is an inter-section, as cyberspace becomes also transformed in the act of piercing. This phenomenon is causing major transformations in at least three areas: 1. Cyberspace is substantially altering the way we produce and communicate architectural information. The arising new working environment suggests highly hybrid and networked conditions that will push the productive and educational landscape of the discipline towards increasing levels of fluidity, exchanges, diversity and change. 2. It has been argued that cyberspace-based human and human-data interactions present us with the opportunity to foster a more free marketplace of ideologies, cultures, preferences, values, and choices. Whether or not the in-progress cyberincisions have the potential to go deep enough to cure the many illnesses afflicting the body of our discipline need to be considered seriously. 3. Cyberspace is a new place or environment wherein new kinds of human activities demand unprecedented types of architectural services. Rather than being a passing fashion, these new architectural requirements are destined to grow exponentially. We need to consider the new modes of practice being created by cyberspace and the education required to prepare for them. This paper looks at these three intersecting territories showing that it is academia and not practice that is leading the profession in the incorporation of virtuality into architecture. Rafael Moneo's words come to mind. [2]
series other
email
last changed 2003/11/21 15:16

_id 2b38
authors Bradford, J., Wong, R. and Yeung, C.S.K.
year 1997
title Hierarchical Decomposition of Architectural Computer Models
doi https://doi.org/10.52842/conf.caadria.1997.197
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 197-203
summary Architectural models can be represented in a hierarchy of complexity. Higher level or more complex architecture structures are then designed by repetitively instantiating libraries of building blocks. The advantages are that the object can be achieved in modular fashion and any modification to the definition of a building block can be easily propagated to all higher level objects using the block. Unfortunately, many existing representations of architectural models are monolithic instead of hierarchical and modular, thus, making the reuse of models very difficult and inefficient. This paper describes a research project on developing a tool to decompose a monolithic architectural model into elementary building blocks and then create a hierarchy in the model representation. The tool provides a graphical interface for the visualization of a model and a cutting plane. An associated algorithm will then automatically detach parts of the model into building blocks depending on where the user is applying the cutting plane. Studies will also be made on dividing more complex models employing spherical and NURBS surfaces.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id 80f7
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2001
title Knowledge-based System to Support Architectural Design - Intelligent objects, project net-constraints, collaborative work
doi https://doi.org/10.52842/conf.ecaade.2001.080
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 80-85
summary The architectural design business is marked by a progressive increase in operators all cooperating towards the realization of building structures and complex infrastructures (Jenckes, 1997). This type of design implies the simultaneous activity of specialists in different fields, often working a considerable distance apart, on increasingly distributed design studies. Collaborative Architectural Design comprises a vast field of studies that embraces also these sectors and problems. To mention but a few: communication among operators in the building and design sector; design process system logic architecture; conceptual structure of the building organism; building component representation; conflict identification and management; sharing of knowledge; and also, user interface; global evaluation of solutions adopted; IT definition of objects; inter-object communication (in the IT sense). The point of view of the research is that of the designers of the architectural artefact (Simon, 1996); its focus consists of the relations among the various design operators and among the latter and the information exchanged: the Building Objects. Its primary research goal is thus the conceptual structure of the building organism for the purpose of managing conflicts and developing possible methods of resolving them.
keywords Keywords. Collaborative Design, Architectural And Building Knowledge, Distributed Knowledge Bases, Information Management, Multidisciplinarity
series eCAADe
email
last changed 2022/06/07 07:55

_id b656
authors Chase, S.C.
year 1997
title Logic based design modeling with shape algebras
source Automation in Construction 6 (4) (1997) pp. 311-322
summary A new method of describing designs by combining the paradigms of shape algebras and predicate logic representations is presented. Representing shapes and spatial relations in logic provides a natural, intuitive method of developing complete computer systems for reasoning about designs. The advantages of shape algebra formalisms over more traditional representations of geometric objects are discussed. The method employed involves the definition of a large set of high level design relations from a small set of simple structures and spatial relations. Examples in architecture and geographic information systems are illustrated.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 460e
authors Dannettel, Mark E
year 1997
title Interactive Multimedia Design: Operational Structures and Intuitive Environments for CD-ROM
doi https://doi.org/10.52842/conf.caadria.1997.415
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 415-427
summary This paper presents practical design concepts for the production of CD-ROMs or on-line media projects which are intended for scholastic and professional use. It is based on the experience and knowledge which has been gained while developing a multimedia package here at the Department of Architecture at CUHK. The package deals exclusively with the technical issue of vertical transportation in buildings, and is intended to be used as a design tool in professional offices, as well as in classroom settings. The required research and production for the development of the structures, formats, and interfaces of this project, along with the consequential evaluation and revision of this work, has led to a greater understanding of appropriate applications for interactive interactive multimedia designs. Specially, the paper addresses the fundamental issues of ‘user-format’, and a distinction is made between applications which operate as ‘tools’ and those which operate as ‘resources’. Descriptions are provided for both types of operational formats, and suggestions are made as to how one might decided which format would be appropriate for a specific project. Briefly, resource produces imply that a user actively pursues information in a relatively static environment, while tool procedures imply that a user works jointly with the software to process information and arrive at a unique output. This distinction between the two formats is mostly grounded in the design of the structure and user-interface, and thus the point is made that the material content of the application does not necessarily imply a mandatory use of either format. In light of this observation that an application’s format relies on the appropriateness of operational procedures, rather than on its material content, further discussions of the implications of such procedures (using a ‘resource’ vs. using a ‘tool’) are provided.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 0755
authors Donath, Dirk and Petzold, Frank
year 1997
title A Digital Way of Planning Based on Information Surveying
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 183-188
summary The aim of this project is to develop a software system for generating complex digital models of existing buildings and structures, i.e. in the broadest sense a computer-supported surveying and management system for existing buildings. The built environment is registered by surveying a series of geometrical and building relevant information broken down into different levels of abstraction. The recorded data consists of a variety of geometric, multimedia and verbal - less structured - pieces of information. The starting point for developing such a system is both an analysis and reworking of the methods used in architectural surveying, and the evaluation and use of current techniques and tools in the field of computer applications.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 4edc
authors Eastman, C., Jeng, T.S., Chowdbury, R. and Jacobsen, K.
year 1997
title Integration of Design Applications with Building Models
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 45-59
summary This paper reviews various issues in the integration of applications with a building model. First, we present three different architectures for interfacing applications to a building model, with three different structures for applying maps between datasets. The limitations and advantages of these alternatives are reviewed. Then we review the mechanisms for interfacing an application to a building data model, allowing iteration execution and the recognition of instance additions, modifications and deletions.
series CAAD Futures
email
last changed 1999/04/06 09:19

_id b5f4
authors Gero, John S. and Ding, Lan
year 1997
title Exploring Style Emergence in Architectural Designs
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 287-296
summary This paper presents an evolutionary approach to style emergence in architectural designs. Emergence is the process of making features explicit which were previously only implicit. Style is considered as a set of common characteristics of a group of designs. It is interpreted using a language model as an analogy and is represented at the genetic level. An evolutionary system based on genetic engineering is developed. It emerges style by locating the genetic structures which produce that style. Preliminary results are presented.
series other
email
last changed 2003/04/06 09:26

_id 6731
authors Gero, John S. and Park, Soon Hoon
year 1997
title Qualitative Representation of Shape and Space for Computer-Aided Architectural Design
doi https://doi.org/10.52842/conf.caadria.1997.323
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 323-334
summary In this paper we develop and describe a qualitative representation scheme for shapes which has the capacity to be utilised in the mappings to the semantics of spaces. The representation is founded on three types of qualitative codes based on landmark values for fundamental shape attributes. Qualitative values for these codes can vary to control the granularity of the representation. Structures in the resultant codings, which are the qualitative representation, can be analyzed to produce generic categories of shape features which provide a connection with "feature-based” models.
series CAADRIA
email
last changed 2022/06/07 07:51

_id c5ff
authors Hellgardt, Michael and Kundu, Sourav
year 1997
title Spatium - A System for the Definition and Design of Shape Grammars
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 83-96
summary It is shown how Augmented Transition Networks (ATN) can be gradually programmed with shape grammar structures. This work is inspired by natural language parsing. Another major reference is the space-between or spatium assumption. An application is given with a simulation of Palladio villas. Then is shown that ATN frames can be encoded in a way that allows their use without specific knowledge of computer modeling. Connections between human and machine learning are touched on.
series CAAD Futures
email
last changed 1999/04/06 09:19

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_855784 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002