CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 519

_id 2698
authors Chien, Sheng Fen and Flemming, Ulrich
year 1997
title Information Navigation in Generative Design Systems
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 355-365
doi https://doi.org/10.52842/conf.caadria.1997.355
summary Generative design systems take an active part in the generation of computational design models. They make it easier for designers to explore conceptual alternatives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease and low cognitive loads. We present an approach to support navigation in generative design systems. Our approach takes account of studies related to navigation in physical environments as well as information navigation in electronic media. Results of studies from the physical environment and electronic media reveal that 1) people exhibit similar cognitive behaviours (spatial cognition and the use of spatial knowledge) while navigating in physical and information spaces; and 2) the information space lacks legibility and imageability. The proposed information navigation model take these findings into account.
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 75a8
authors Achten, Henri H.
year 1997
title Generic representations : an approach for modelling procedural and declarative knowledge of building types in architectural design
source Eindhoven University of Technology
summary The building type is a knowledge structure that is recognised as an important element in the architectural design process. For an architect, the type provides information about norms, layout, appearance, etc. of the kind of building that is being designed. Questions that seem unresolved about (computational) approaches to building types are the relationship between the many kinds of instances that are generally recognised as belonging to a particular building type, the way a type can deal with varying briefs (or with mixed use), and how a type can accommodate different sites. Approaches that aim to model building types as data structures of interrelated variables (so-called ‘prototypes’) face problems clarifying these questions. The research work at hand proposes to investigate the role of knowledge associated with building types in the design process. Knowledge of the building type must be represented during the design process. Therefore, it is necessary to find a representation which supports design decisions, supports the changes and transformations of the design during the design process, encompasses knowledge of the design task, and which relates to the way architects design. It is proposed in the research work that graphic representations can be used as a medium to encode knowledge of the building type. This is possible if they consistently encode the things they represent; if their knowledge content can be derived, and if they are versatile enough to support a design process of a building belonging to a type. A graphic representation consists of graphic entities such as vertices, lines, planes, shapes, symbols, etc. Establishing a graphic representation implies making design decisions with respect to these entities. Therefore it is necessary to identify the elements of the graphic representation that play a role in decision making. An approach based on the concept of ‘graphic units’ is developed. A graphic unit is a particular set of graphic entities that has some constant meaning. Examples are: zone, circulation scheme, axial system, and contour. Each graphic unit implies a particular kind of design decision (e.g. functional areas, system of circulation, spatial organisation, and layout of the building). By differentiating between appearance and meaning, it is possible to define the graphic unit relatively shape-independent. If a number of graphic representations have the same graphic units, they deal with the same kind of design decisions. Graphic representations that have such a specifically defined knowledge content are called ‘generic representations.’ An analysis of over 220 graphic representations in the literature on architecture results in 24 graphic units and 50 generic representations. For each generic representation the design decisions are identified. These decisions are informed by the nature of the design task at hand. If the design task is a building belonging to a building type, then knowledge of the building type is required. In a single generic representation knowledge of norms, rules, and principles associated with the building type are used. Therefore, a single generic representation encodes declarative knowledge of the building type. A sequence of generic representations encodes a series of design decisions which are informed by the design task. If the design task is a building type, then procedural knowledge of the building type is used. By means of the graphic unit and generic representation, it is possible to identify a number of relations that determine sequences of generic representations. These relations are: additional graphic units, themes of generic representations, and successive graphic units. Additional graphic units defines subsequent generic representations by adding a new graphic unit. Themes of generic representations defines groups of generic representations that deal with the same kind of design decisions. Successive graphic units defines preconditions for subsequent or previous generic representations. On the basis of themes it is possible to define six general sequences of generic representations. On the basis of additional and successive graphic units it is possible to define sequences of generic representations in themes. On the basis of these sequences, one particular sequence of 23 generic representations is defined. The particular sequence of generic representations structures the decision process of a building type. In order to test this assertion, the particular sequence is applied to the office building type. For each generic representation, it is possible to establish a graphic representation that follows the definition of the graphic units and to apply the required statements from the office building knowledge base. The application results in a sequence of graphic representations that particularises an office building design. Implementation of seven generic representations in a computer aided design system demonstrates the use of generic representations for design support. The set is large enough to provide additional weight to the conclusion that generic representations map declarative and procedural knowledge of the building type.
series thesis:PhD
email
more http://alexandria.tue.nl/extra2/9703788.pdf
last changed 2003/11/21 15:15

_id 4e1c
authors Berdinski, D.
year 1997
title Combining different kinds of perspective images in architectural practice.
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary This paper is about combining photo-, video-, endoscope captured images with handmade or computer generated ones. Practically all optical systems are known to produce more or less curved perspective (spherical or cylindrical) which depends of angle-of-view, and a computer as a rule (as handmade) constructs linear perspective images. To combine them on any media correctly, an operator has to be professional painter or designer, because there is no mathematically determined way to combine them. The author's-made demo-computer program is able to generate spherical perspective of simple spatial constructions. It allows to illustrate mathematically and visually the principles of optical curved perspective, laws of their combination with linear ones and helps to feel how to achieve the accordance with natural visual architectural images.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id e292
authors Charitos, D. and Bridges, A.H.
year 1997
title On Architectural Design of Virtual Environments
source Design Studies, Vol.18, No. 2, 143-154
summary This paper considers the domains of architectural design and film theory for the purpose of informing the design of virtual environments (VEs). It is suggested that these domains may form a background for the consideration of possible metaphors for the design of VEs. Firstly, the paper investigates the relation between architecture and virtual reality technology, through the nature of drawings and virtual environments as means of representing three-dimensional spaces. Then, differences between VEs and physical environments (PEs) are identified for the purpose of understanding the intrinsic nature of VEs, by comparing them to our familiar everyday spatial experience. This step is considered essential in helping us understand how we might be able to develop an architectural conception of designing spaces, in the context of VEs. The paper then presents two directions towards informing VE design by means of theoretical and practical architectural design knowledge. Finally, the use of film-related studies is considered as a means of enhancing our conception of time and movement in VEs.
series journal paper
email
last changed 2003/04/23 15:50

_id 8956
authors Charitos, D. and Rutherford, P.
year 1997
title Ways of aiding navigation in VRML worlds
source Proceedings of the Sixth international EuropIA Conference, europia Production
summary This paper suggests ways of enhancing spatial awareness for the operator of a VRML world, in order to augment her performance, in terms of orientation and wayfinding. In essence, it draws from the fields of environmental cognition, architectural and urban design theories, in order to address the problem of designing VRML worlds, so as to aid the operator's spatial awareness. In addition, it explores the possible development of navigation aids for wayfinding, within such virtual environments. The inclusion of these navigation aids will be seen to have a direct bearing upon the spatial awareness of the designed VRML world.
series other
last changed 2003/04/23 15:14

_id e821
authors Hartkopf, V., Loftness, V., Mahdavi, A., Lee, S. and Shankavaram, J.
year 1997
title An integrated approach to design and engineering of intelligent buildings--The Intelligent Workplace at Carnegie Mellon University
source Automation in Construction 6 (5-6) (1997) pp. 401-415
summary In the past few years, there have been significant advances made in the design and engineering of "intelligent" workplaces, buildings that not only accommodate major advances in office technology but provide better physical and environmental settings for the occupants. This paper will briefly present recent approaches to the creation of innovative environments for the advanced workplace. The architectural and engineering advances demonstrated in Japan, Germany, North America, the United Kingdom, and France can be summarized in four major system categories: (1) enclosure innovations including approaches to load balancing, natural ventilation, and daylighting; (2) heating, ventilation and air-conditioning (HVAC) system innovations including approaches to local control and improved environmental contact; (3) data/voice/power "connectivity" innovations; and (4) interior system innovations, including approaches to workstation and workgroup design for improved spatial, thermal, acoustic, visual, and air quality. In-depth international field studies of over 20 intelligent office buildings have been carried out by a multidisciplinary expert team of the Advanced Building Systems Integration Consortium (ABSIC) based at Carnegie Mellon University. ABSIC is a university-industry-government partnership focused on the definition and development of the advanced workplace. The ABSIC field team evaluated the component and integrated system innovations for their multidimensional performance qualities, through expert analysis, occupancy assessments, and field diagnostics. Based on the results of the case studies and building on the most recent technological advances, the ABSIC team developed the concepts for the Intelligent Workplace, a 7000 square foot living laboratory of office environments and innovations. This project is now under construction at Carnegie Mellon University and its features are discussed in the second section of this paper.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 5c74
authors HCIL
year 1997
title Spatial Perception in Perspective Displays
source Report Human-Computer Interaction Lab, Virginia
summary Increasingly, computer displays are being used as the interface "window" between complex systems and their users. In addition, it is becoming more common to see computer interfaces represented by spatial metaphors, allowing users to apply their vast prior knowledge and experience in dealing with the three-dimensional (3D) world (Wickens, 1992). Desktop VR or window on a world (WoW), as it is sometimes called, uses a conventional computer monitor to display the virtual environment (VE). The 3D display applies perspective geometry to provide the illusion of 3D space.
series report
last changed 2003/04/23 15:50

_id a5c7
authors Hovestadt, Ludger and Hovestadt, Volkmar
year 1997
title ARMILLA5 - Supporting Design, Construction and Management of Complex Buildings
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 135-150
summary ARMILLA5 is a generic computer aided design system, which supports the cooperative design of complex buildings (such as labs, offices or schools) over multiple levels of abstraction. It follows the metaphor of a virtual building site. The designers and engineers meet at a spatial location on the Internet and prepare the building construction by simulating the building site. This article describes the three essential components of the ARMILLA5-model: the geometric model which describes the spatial and physical aspects of the building site, the semantic model which implements passive building components as objects and active building components as applets or applications, and the planning model, which organizes the work steps of the individual engineers and their cooperation. The model is described using different software prototypes written in Objective C, CAD systems and HTML/JAVA.
keywords Dynamic Buildings, CAAD, CSCW, VRML, Case-based Reasoning, Facility Management, Augmented Reality
series CAAD Futures
email
last changed 1999/04/06 09:19

_id 03d0
authors Neiman, Bennett and Bermudez, Julio
year 1997
title Between Digital & Analog Civilizations: The Spatial Manipulation Media Workshop
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 131-137
doi https://doi.org/10.52842/conf.acadia.1997.131
summary As the power shift from material culture to media culture accelerates, architecture finds itself in the midst of a clash between centuries-old analog design methods (such as tracing paper, vellum, graphite, ink, chipboard, clay, balsa wood, plastic, metal, etc.) and the new digital systems of production (such as scanning, video capture, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc.). Moving forward requires a realization that a material interpretation of architecture proves limiting at a time when information and media environments are the major drivers of culture. It means to pro-actively incorporate the emerging digital world into our traditional analog work. It means to change.

This paper presents the results of an intense design workshop that looks, probes, and builds at the very interface that is provoking the cultural and professional shifts. Media space is presented and used as an interpretive playground for design experimentation in which the poetics of representation (and not its technicalities) are the driving force to generate architectural ideas. The work discussed was originally developed as a starting exercise for a digital design course. The exercise was later conducted as a workshop at two schools of architecture by different faculty working in collaboration with it's inventor.

The workshop is an effective sketch problem that gives students an immediate start into a non-traditional, hands-on, and integrated use of contemporary media in the design process. In doing so, it establishes a procedural foundation for a design studio dealing with digital media.

series ACADIA
email
last changed 2022/06/07 07:58

_id ddssup9619
id ddssup9619
authors Tisma, Alexandra
year 1996
title Multimedia Training "Designing Randstad"
source Timmermans, Harry (Ed.), Third Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings (Spa, Belgium), August 18-21, 1996
summary The project multimedia training "Designing Randstad" (MTDR) is an experimental attempt to introduce multimedia in education at the Faculty of Architecture in Delft. It intends to develope teachware which will learn the students the basics of Geographic Informational Systems (GIS) implementation in land use evaluation appropriate for physical planning purposes. Interaction between students and the system will enable students to learn about GIS, to design a model of the spatial development of Randstad area and to evaluate their own designs, to produce immediate graphic visualisation of the evaluation and to compare it with the evaluations of the fellow students. The project will be applied in the first year curriculum, in the course "Region" of the Department of Urban planning of the Faculty of Architecture, in the first half of the year 1997.
series DDSS
last changed 2003/08/07 16:36

_id 0f97
authors Kvan, Th., West, R. and Vera, A.
year 1997
title Choosing Tools for a Virtual Community
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 20 p.
summary This paper reports on the results of experiments carried out to identify the effects of computer-mediated communication between participants involved in a design problem. When setting up a virtual design community, choices must be made between a variety of tools, choices dictated by budget, bandwidth, ability, availability. How do you choose between the tools, which is useful and how will each affect the outcome of the design exchanges you plan? Cognitive modelling methodologies such as GOMS have been used by interface designers to capture the mechanisms of action and interaction involved in routine expert behavior. Using this technique, which breaks down an individual's behaviors into Goals, Operators, Methods, and Selection rules, it is possible to evaluate the impact of different aspects of an interface in task-specific ways. In the present study, the GOMS methodology was used to characterize the interactive behavior of knowledgeable participants as they worked on a design task under different communication-support conditions.

Pairs of participants were set a design problem and asked to solve it in face-to-face settings. The same problem was then tackled by participants in settings using two different modes of computer-supported communication: email and an electronic whiteboard. Protocols were collected and analyzed in terms of the constraints of each tool relative to the task and to each other. The GOMS methodology was used as a way to represent the collaborative design process in a way that yields information on both the productivity and performance of participants in each of the three experimental conditions. It also yielded information on the component elements of the design process, the basic cognitive building-blocks of design, thereby suggesting fundamentally new tools that might be created for interaction in virtual environments.

A further goal of the study was to explore the nature of task differences in relation to alternative platforms for communication. It was hypothesized that design processes involving significant negotiation would be less aided by computer support than straight forward design problems. The latter involve cooperative knowledge application by both participants and are therefore facilitated by information-rich forms of computer support. The former, on the other hand, requires conflict resolution and is inhibited by non face-to-face interaction. The results of this study point to the fact that the success of collaboration in virtual space is not just dependent on the nature of the tools but also on the specific nature of the collaborative task.

keywords Cognitive Models, Task-analysis, GOMS
series other
email
last changed 2003/05/15 20:50

_id 2e3b
authors Kvan, Thomas and Kvan, Erik
year 1997
title Is Design Really Social
source Creative Collaboration in Virtual Communities 1997, ed. A. Cicognani. VC'97. Sydney: Key Centre of Design Computing, Department of Architectural and Design Science, University of Sydney, 8 p.
summary There are many who will readily agree with Mitchell’s assertion that “the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process.” [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants; that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided; therefore; must permit the best communication and the best social interaction. We think it essential to examine the foundations and assumptions on which software and environments are designed to support collaborative design communication. Of particular interest to us in this paper is the assumption about the “social” nature of design. Early research in computer-assisted design collaborations has jumped immediately into conclusions about communicative models which lead to high-bandwidth video connections as the preferred channel of collaboration. The unstated assumption is that computer-supported design environments are not adequate until they replicate in full the sensation of being physically present in the same space as the other participants (you are not there until you are really there). It is assumed that the real social process of design must include all the signals used to establish and facilitate face-to-face communication; including gestures; body language and all outputs of drawing (e.g. Tang [1991]). In our specification of systems for virtual design communities; are we about to fall into the same traps as drafting systems did?
keywords CSCW; Virtual Community; Architectural Design; Computer-Aided Design
series other
email
last changed 2002/11/15 18:29

_id eb53
authors Asanowicz, K. and Bartnicka, M.
year 1997
title Computer analysis of visual perception - endoscopy without endoscope
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary This paper presents a method of using computer animation techniques in order to solve problems of visual pollution of city environment. It is our observation that human-inducted degradation of city environmental results from well - intentioned but inappropriate preservation actions by uninformed designers and local administration. Very often, a local municipality administration permits to build bad-fitting surroundings houses. It is usually connected with lack of visual information's about housing areas of a city, its features and characteristics. The CAMUS system (Computer Aided Management of Urban Structure) is being created at the Faculty of Architecture of Bialystok Technical University. One of its integral parts is VIA - Visual Impact of Architecture. The basic element of this system is a geometrical model of the housing areas of Bialystok. This model can be enhanced using rendering packages as they create the basis to check our perception of a given area. An inspiration of this approach was the digital endoscopy presented by J. Breen and M. Stellingwerff at the 2nd EAEA Conferences in Vienna. We are presenting the possibilities of using simple computer programs for analysis of spatial model. This contribution presents those factors of computer presentation which can demonstrate that computers achieve such effects as endoscope and often their use be much more efficient and effective.
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id acadia07_174
id acadia07_174
authors Bontemps, Arnaud; Potvin, André; Demers, Claude
year 2007
title The Dynamics of Physical Ambiences
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 174-181
doi https://doi.org/10.52842/conf.acadia.2007.174
summary This research proposes to support the reading of physical ambiences by the development of a representational technique which compiles, in a numerical interface, two types of data: sensory and filmic. These data are recorded through the use of a portable array equipped with sensors (Potvin 1997, 2002, 2004) as well as the acquisition of Video information of the moving environment. The compilation of information is carried out through a multi-media approach, by means of a program converting the environmental data into dynamic diagrams, as well as the creation of an interactive interface allowing a possible diffusion on the Web. This technique, named APMAP/Video, makes it possible to read out simultaneously spatial and environmental diversity. It is demonstrated through surveys taken at various seasons and time of the day at the new Caisse de dépôt et de placement headquarters in Montreal which is also the corpus for a SSHRC (Social Sciences and Humanities Research Council) research grant on Environmental Adaptability in Architecture (Potvin et al. 2003-2007). This case study shows that the technique can prove of great relevance for POEs (Post Occupancy Evaluation) as well as for assistance in a new design project.
series ACADIA
email
last changed 2022/06/07 07:54

_id 0024
authors Breen, J. and Dijk, T. van
year 1997
title Modelling for eye level composition; design media experiments in an educational setting.
source Architectural and Urban Simulation Techniques in Research and Education [Proceedings of the 3rd European Architectural Endoscopy Association Conference / ISBN 90-407-1669-2]
summary In order to simulate the visual effects of designs at eye level, it is necessary to construct models from which (sequences of) images can be taken. This holds true for both Optical Endoscopy and Computer Aided Visualisation techniques. In what ways can an eye level approach stimulate spatial awareness and create insights into the workings of a design concept? Can Endoscopic methods be used effectively as a creative environment for design decision-making and teamwork and even to stimulate the generation of new design ideas? How should modelmaking be considered if it is to be of use in an ‘impatient’ design process, and how can students be made aware of the opportunities of both direct eye level observations from design models and of the more sophisticated endoscopic imaging techniques? This paper explores the theme of eye level modelling by focusing on a number of formal exercises and educational experiments carried out by the Delft Media group in recent years. An attempt is made to describe and evaluate these experiences, in order to draw conclusions and to signal possible new opportunities for eye level composition for the benefit of both design education and practice...
keywords Architectural Endoscopy, Endoscopy, Simulation, Visualisation, Visualization, Real Environments
series EAEA
email
more http://www.bk.tudelft.nl/media/eaea/eaea97.html
last changed 2005/09/09 10:43

_id cabb
authors Broughton, T., Tan, A. and Coates, P.S.
year 1997
title The Use of Genetic Programming In Exploring 3D Design Worlds - A Report of Two Projects by Msc Students at CECA UEL
source CAAD Futures 1997 [Conference Proceedings / ISBN 0-7923-4726-9] München (Germany), 4-6 August 1997, pp. 885-915
summary Genetic algorithms are used to evolve rule systems for a generative process, in one case a shape grammar,which uses the "Dawkins Biomorph" paradigm of user driven choices to perform artificial selection, in the other a CA/Lindenmeyer system using the Hausdorff dimension of the resultant configuration to drive natural selection. (1) Using Genetic Programming in an interactive 3D shape grammar. A report of a generative system combining genetic programming (GP) and 3D shape grammars. The reasoning that backs up the basis for this work depends on the interpretation of design as search In this system, a 3D form is a computer program made up of functions (transformations) & terminals (building blocks). Each program evaluates into a structure. Hence, in this instance a program is synonymous with form. Building blocks of form are platonic solids (box, cylinder, etc.). A Variety of combinations of the simple affine transformations of translation, scaling, rotation together with Boolean operations of union, subtraction and intersection performed on the building blocks generate different configurations of 3D forms. Using to the methodology of genetic programming, an initial population of such programs are randomly generated,subjected to a test for fitness (the eyeball test). Individual programs that have passed the test are selected to be parents for reproducing the next generation of programs via the process of recombination. (2) Using a GA to evolve rule sets to achieve a goal configuration. The aim of these experiments was to build a framework in which a structure's form could be defined by a set of instructions encoded into its genetic make-up. This was achieved by combining a generative rule system commonly used to model biological growth with a genetic algorithm simulating the evolutionary process of selection to evolve an adaptive rule system capable of replicating any preselected 3D shape. The generative modelling technique used is a string rewriting Lindenmayer system the genes of the emergent structures are the production rules of the L-system, and the spatial representation of the structures uses the geometry of iso-spatial dense-packed spheres
series CAAD Futures
email
last changed 2003/11/21 15:16

_id b656
authors Chase, S.C.
year 1997
title Logic based design modeling with shape algebras
source Automation in Construction 6 (4) (1997) pp. 311-322
summary A new method of describing designs by combining the paradigms of shape algebras and predicate logic representations is presented. Representing shapes and spatial relations in logic provides a natural, intuitive method of developing complete computer systems for reasoning about designs. The advantages of shape algebra formalisms over more traditional representations of geometric objects are discussed. The method employed involves the definition of a large set of high level design relations from a small set of simple structures and spatial relations. Examples in architecture and geographic information systems are illustrated.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 751d
authors Cubero, R., Caldera, N., Indriago, J.A., Camacaro, L., Nixon, M. and Cestary, J.
year 2001
title Georeferenciando revicios y recursos turisticos para la plaificacion territorial: El Sigtur-Zulia [Georeferential Services and Touristic Resources for Territorial Planning: The Sigtur-Zulia]
source 2da Conferencia Venezolana sobre Aplicación de Computadores en Arquitectura, Maracaibo (Venezuela) december 2001, pp. 146-155
summary In 1997, the Research Institute of Faculty of Architecture and Design, University of Zulia, started the R&D project of a decision making support system for tourism planning. For this, GIS technologies have been used for geocodification and spatial analysis of all the tourism facilities and resources existing in Zulia State, studying this kind of socioeconomic development according to critical poverty problems that are typical of their population. This paper describes this geographic information system, with the application of accessibility analysis, areas of influence, and threedimensional studies through network analysisó three-dimensional analysis with ArcView GIS clients, ArcExplorer clients, and MapObjects clients, on an MS Windows NT client/server environment.
keywords GIS; Tourism Planning; Internet; Desktop Mapping
series other
email
last changed 2003/02/14 08:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_508515 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002