CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 556

_id e5a2
authors Debevec, P.
year 1998
title Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography
source Proc. ACM SIGGRAPH 98, M. Cohen, Ed., 189–198
summary We present a method that uses measured scene radiance and global illumination in order to add new objects to light-based models with correct lighting. The method uses a high dynamic range imagebased model of the scene, rather than synthetic light sources, to illuminate the newobjects. To compute the illumination, the scene is considered as three components: the distant scene, the local scene, and the synthetic objects. The distant scene is assumed to be photometrically unaffected by the objects, obviating the need for re- flectance model information. The local scene is endowed with estimated reflectance model information so that it can catch shadows and receive reflected light from the new objects. Renderings are created with a standard global illumination method by simulating the interaction of light amongst the three components. A differential rendering technique allows for good results to be obtained when only an estimate of the local scene reflectance properties is known. We apply the general method to the problem of rendering synthetic objects into real scenes. The light-based model is constructed from an approximate geometric model of the scene and by using a light probe to measure the incident illumination at the location of the synthetic objects. The global illumination solution is then composited into a photograph of the scene using the differential rendering technique. We conclude by discussing the relevance of the technique to recovering surface reflectance properties in uncontrolled lighting situations. Applications of the method include visual effects, interior design, and architectural visualization.
series other
last changed 2003/04/23 15:50

_id 7560
authors Gomez, Nestor
year 1998
title Conceptual Structural Design Through Knowledge Hierarchies
source Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh
summary Computer support for conceptual design still lags behind software available for analysis and detailed design. The Software Environment to Support the Early Phases in Building Design (SEED) project has the goal of providing design generation and exploration capabilities to aid in the conceptual design of buildings, from architectural programming and layout to enclosure design and structural configuration. The current work presents a component of the efforts of the SEED-Config Structure group in providing computer support for conceptual structural design. The Building Entity and Technology (BENT) approach models data about building elements in a general, hierarchical form, where design evolution is represented by the growing specificity of the design description. Two methods of system-supported design generation are provided: case-based reasoning and application of knowledge rules. The knowledge rules, termed technologies, and how they are specified and used are the primary focus of this thesis. In the BENT approach, conceptual structural engineering knowledge is modularized into technology nodes arranged in a directed 'AND/OR' graph, where OR nodes represent alternative design decisions and AND nodes represent problem decomposition. In addition, nodes in the graph may also be specified as having AND/OR incoming arcs thus reducing the duplication of nodes and enhancing the representational power of the approach. In order to facilitate the incorporation of new knowledge into the system, and verify and/or change the knowledge already in the system, the data model and the interface allow for dynamic creation, browsing, and editing of technology nodes. Design generation through the use of the knowledge hierarchy involves the conditional application of nodes according to the design context as represented by the building element(s) under consideration. Each application of a technology node expands the design of building elements by increasing the detail of the design description or by decomposing the elements into less abstract components. In addition, support for simultaneous design of multiple elements and for iteration control are also provided. An important feature of the BENT approach is that the generative knowledge (i.e., the technology hierarchy) is detached from the information repository (i.e., the database of entities which make up the building). This allows the technology hierarchies to be used in a modular fashion from building problem to building problem.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id e537
authors Heylighen, A., Segers, R. and Neuckermans, H.
year 1998
title InterAction through Information
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 87-92
doi https://doi.org/10.52842/conf.ecaade.1998.087
summary Past designs have been recognised as a significant source of knowledge in architectural design. IT offers the opportunity to represent these designs not only by text, graphics and images, but also by 3D-models, computer animation, sound and video. In spite of the growing availability of multimedia archives, libraries and case bases, their contribution to the development of students? ?design craftsmanship? so far seems to be limited. If IT wants to make a valuable contribution to this development, the challenge is not to passively provide students with information on past designs, but to (inter)actively support the dynamic interplay between these designs and the student?s design process. We are developing a tool that fundamentally attempts to explore this potential by using information as a vehicle to initiate, nurture and improve this interplay. The tool, which is intended to assist (student-)architects during the early conceptual stage of design, is conceived as a an (inter)active workhouse rather than a passive warehouse: it is interactively developed by and actively develops its users? knowledge. We have implemented a working prototype of the tool, at first stage for the design studio, yet with the potential of expansion into the office setting.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/08heylighen/index.htm
last changed 2022/06/07 07:51

_id e679
authors Seichter, H., Donath, D. and Petzold, F.
year 2002
title TAP – The Architectural Playground - C++ framework for scalable distributed collaborative architectural virtual environments
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 422-426
doi https://doi.org/10.52842/conf.ecaade.2002.422
summary Architecture is built information (Schmitt, 1999). Architects have the task of restructuring and translating information into buildable designs. The beginning of the design process where the briefing is transformed into an idea is a crucial phase in the design process. It is where the architect makes decisions which influence the rest of the design development process (Vries et al., 1998). It is at this stage where most information is unstructured but has to be integrated into a broad context. This is where TAP is positioned – to support the architect in finding solutions through the creation of spatially structured information sets without impairing thereby the creative development. We want to enrich the inspiration of an architect with a new kind of information design. A further aspect is workflow in a distributed process where the architect’s work becomes one aspect of a decentralised working patterns. The software supports collaborative work with models, sketches and text messages within an uniform surface. The representations of the various media are connected and combined with each other and the user is free to combine them according to his or her needs.
series eCAADe
email
last changed 2022/06/07 07:59

_id ddss9802
id ddss9802
authors Akin, O., Aygen, Z., Cumming, M., Donia, M., Sen, R. and Zhang, Y.
year 1998
title Computational Specification of Building Requirements in theEarly Stages of Design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary We have been exploring computational techniques to help building designers to specify design requirements during the early stages of design. In the past, little has been accomplished in this area either in terms of innovative computational technologies or the improvement of design performance.The prospect of improving design productivity and creating a seamless process between requirements specification and formal design are our primary motivations. This research has been conducted as partof a larger project entitled SEED (Software Environment to Support Early Phases in Building Design). SEED features an open-ended modular architecture, where each module provides support for a design activity that takes place in early design stages. Each module is supported by a database to store and retrieve information, as well as a user interface to support the interaction with designers. The module described in this paper, SEED-Pro (the architectural programming module of SEED), is a workingprototype for building design requirements specification. It can be used by other modules in SEED or by design systems in other domains, such as mechanical engineering, civil engineering, industrial designand electrical engineering. Our approach to SEED-Pro is divided into two phases: core, and support functionalities. The core functionalities operate in an interactive mode relying on a case-based approach to retrieve and adapt complex specification records to the problem at hand. The supportfunctionalities include the case-base, the data-base, and the standards processing environment for building specification tasks. Our findings indicate that SEED-Pro: (1) is a tool that structures the unstructured domain of design requirements; (2) enables the integration of design requirements with the rest of the design process, (3) leads to the creation of complex case-bases and (4) enables the observation of their performance in the context of real world design problems.
series DDSS
last changed 2003/11/21 15:15

_id b037
authors Brusasco, P.L., Caneparo, L., Carrara, G., Fioravanti, A., Novembri, G. and Zorgno, Anna Maria
year 2000
title Computer Supported Design Studio
source Automation in Construction 9 (4) (2000) pp. 393-408
summary The paper presents the ongoing experimentation of a Computer Supported Design Studio (CSDS). CSDS is part of our continuing effort to integrate computers and networks in the design studio. We recognise three corner stones to CSDS: memory, process and collaboration. They offer a framework for the interpretation of the pedagogical aspects of the teaching of architectural design in relation to the innovations produced by information and communication technologies. The theme of the 1998 CSDS is a railway station in Turin, Italy, to be incorporated in a reorganised rail transport system. The choice of this theme emphasises the realistic simulation aspects of the studio, where technical problems need to be interpreted from an architectural point of view.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id fb22
authors Chien, Sheng-Fen
year 1998
title Supporting information navigation in generative design systems
source Camegie Mellon University, School of Architecture
summary Generative design systems make it easier for designers to generate and explore design altematives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease. Such aids may improve the usability of generative design systems and encourage their use in architectural practice. This dissertation presents a comprehensive approach to support navigation in generative design systems. This approach takes account of studies related to human spatial cognition, wayfinding in physical environments, and information navigation in electronic media. It contains a general model of design space, basic navigation operations, and principles for designing navigation support. The design space model describes how the space may grow and evolve along predictable dimensions. The basic operations facilitate navigation activities in this multi-dimensional design space. The design principles aim at guiding system developers in creating navigation utilities tailored to the needs of individual design systems. This approach is validated through prototype implementations and limited pilot usability studies. The validity of the design space model and basic navigation operations is examined through the development of a design space navigation framework that encapsulates the model and operations in a software environment and provides the infrastructure and mechanisms for supporting navigation. Three prototype navigation tools are implemented using this framework. These tools are subjected to usability studies. The studies show that these tools are easy to leam and are efficient in assisting designers locating desired information. In summary, it can be demonstrated that through the prototype implementations and usability studies, this approach offers sufficient support for the design and implementation of navigation aids in a generative design system. The research effort is a pioneer study on navigation support in generative design systems. It demonstrates why navigation support is necessary; how to provide the support; and what types of user interaction it can offer. This research contributes to information navigation studies not only in the specific domain of generative design system research, but also in the general field of human-computer interaction.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c3e0
authors Dorsey, J. and McMillan, L.
year 1998
title Computer Graphics and Architecture: State of the Art and Outlook for the Future
source Computer Graphics, Vol 32, No 1, Feb 1998. pp. 45-48
summary During the three decades since Ivan Sutherland introduced the Sketchpad system, there has been an outpouring of computer graphics systems for use in architecture. In response to this development, most of the major architectural firms around the world have embraced the idea that computer literacy is mandatory for success. We would argue, however, that most of these recent developments have failed to tap the potential of the computer as a design tool. Instead, computers have been relegated largely to the status of drafting instruments, so that the "D" in CAD stands for drafting rather than design. It is important that future architectural design systems consider design as a continuous process rather than an eventual outcome.The advent of computer graphics technology has had an impact on the architectural profession. Computer graphics has revolutionized the drafting process, enabling the rapid entry and modification of designs. In addition, modeling and rendering systems have proven to be invaluable aids in the visualization process, allowing designers to walk through their designs with photorealistic imagery. Computer graphics systems have also demonstrated utility for capturing engineering information, greatly simplifying the analysis and construction of proposed designs. However, it is important to consider that all of these tasks occur near the conclusion of a larger design process. In fact, most of the artistic and intellectual challenges of an architectural design have already been resolved by the time the designer sits down in front of a computer. In seeking insight into the design process, it is generally of little use to revisit the various computer archives and backups. Instead, it is best to explore the reams of sketches and crude balsa models that fill the trash cans of any architectural studio.In architecture, as in most other fields, the initial success of computerization has been in areas where it frees humans from tedious and mundane tasks. This includes the redrawing of floor plans after minor modifications, the generation of largely redundant, yet subtly different engineering drawings and the generation of perspective renderings.We believe that there is a largely untapped potential for computer graphics as a tool in the earlier phases of the design process. In this essay, we argue that computer graphics might play a larger role via applications that aid and amplify the creative process.
series journal paper
last changed 2003/04/23 15:50

_id 2d33
authors Gabryszewski, A.B.
year 1998
title Conception of Computer-Aided Study of Determinants
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 85-92
summary Computer catalogues, files, digital maps and data bases are more and more widely used in planning studies not only in the world, but in Poland as well. They successfully replace manual and time- consuming elaboration of cartographic materials or uphill collecting of data, among others. The developing computerisation in architectural offices, physical planning or other area management centers will assure a studies results' transfer in the form of digital maps or computer data bases in the near future Computer technology forces changes of work technics and generates in the next step the demand for mathematical models used for examining of eco-social-economic systems functioning. The speed of data processing influences on the profitability of common usage of the source data available on magnetic recording media. Thus data processing and data aggregation according to the designers' needs are more simply and generating of new information essential for creating of updated constructive solutions is possible too. Sharply increasing information resources (like Internet) require the adoption of such techniques and models, which make easier to control still increasing number of over-complicated- structure data bases.
series plCAD
last changed 1999/04/08 17:16

_id ddss9827
id ddss9827
authors Heylighen, A., Segers, R. and Neuckermans, H.
year 1998
title Prototype of an Interactive Case Library for Architectural Design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Architects acquire an important part of their design knowledge from existing designs. Specific design projects from the past form an indispensable source of information and inspiration. Hence the idea todevelop a digital library of design cases that can be easily accessed during design. The paper describes a recently developed prototype of such a case library, intended to assist architecture students in the studio,yet with the potential of expansion into the office setting. When students enrol into a design project, they usually receive a reader with some relevant examples. At first sight, the digital case library only seems torepresent these examples into another medium, yet there are some important differences between both. Unlike the reader, the library has at its core an indexing-system which allows the easy retrieval of relevantinformation. By labelling projects with several features and making links between similar designs, the tool supports both directed search and browsing. A second difference is that the library is interactive. Studentsare not only able to consult interesting examples, but also to add other projects they consider relevant, to make links between them, to create extra indices etc. Finally, the tool allows to combine several media andto create links to external information sources.
series DDSS
last changed 2003/08/07 16:36

_id 8dae
authors Homma, R., Morozumi, M. and Iki, K.
year 1998
title Network-Based Dynamic Evaluation Process for Urban Landscapes
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.1998.213
summary When designing large-scale projects that affect urban landscapes such as the construction of power stations, it is important for a designer, to be able to predict how the landscape will be changed and public opinion in regard to the design stage. In order to support the communication between the public and the designer in the design process, authors have proposed a Network-Based Dynamic Evaluation Process (NDEP) for urban landscapes with WEB. This process can achieve a consensus decision, by applying the interactive cycles of proposal and evaluation to the design process. In this paper the authors outlined the framework of the process, the evaluation method by AHP, and a case study of an experimental production system.
keywords Decision Support Systems, Landscape Simulation, VRML, JAVA
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:50

_id 1873
authors Ji, Guohua and Feng, Jinlong
year 1999
title Structural Approach to the Organization of Information: A Teaching Experiment at SEU
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 153-159
doi https://doi.org/10.52842/conf.caadria.1999.153
summary Design studio still plays a very important role in architectural design education today since teachers and students can exchange their thinking directly. In the whole teaching/learning process, there are a lot of information to be exchanged between the teachers and the students. How to organize the information and record the whole teaching/learning process is very interesting to us. The increasing use of CAD raises some problems with its advantages when the amount of compute-files becomes very big and they are in different formats. In the third year design studio teaching in the academic year 1998/99 at Department of Architecture in Southeast University, we try to use WWW techniques and features to organise the design information. We try to integrate the teaching programme, the project information, the reference material and the students' work together, to record and monitor the teaching process. Since the teaching programme is clearly organised, we could use some strategies and ideas to control the organisation of file storage and presentation. It creates the basis for the further development of applying network to aid the studio teaching.
series CAADRIA
last changed 2022/06/07 07:52

_id 6cfc
authors Johnson Brian R. and Millet, Marietta S.
year 1998
title Development of a Case Study "Multi-Site" on the World Wide Web
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.1998.223
summary Seeking to enhance the availability and quality of architectural case studies, we examine the web, believing that it may help to simplify authorship, distribution, and navigation of a catalog of case studies. A disk-based multi-media prototype from an earlier effort has been converted to the web and generalized to create a template. Warehousing and navigation of multiple case studies forms the main focus of the current project. Two existing models, monolithic web sites and web rings, are considered and rejected. A third approach is developed which promises to provide a low-budget low-overhead infrastructure within which to house an indefinite number of case studies, while permitting free-form browsing of the collection. The approach which we have developed creates what we call a "multi-site".
keywords Information Delivery Systems for Design, Cooperative Authorship, World Wide Web
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:52

_id ee96
authors Johnson, Scott
year 1998
title Making Models Architectural: Protean Representations to Fit Architects’ Minds
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 354-365
doi https://doi.org/10.52842/conf.acadia.1998.354
summary A rich vocabulary has evolved for describing architecture. It serves not only as a means of communication, but also as an embodiment of concepts relating to form, space, structure, function, mood, and symbolism. We architects not only speak in terms of walls, rooms, roofs, arches, etc., we see in terms of them and think in terms of them, as well. Such concepts are integral to our ability to design. Typical CAD representations, however, are based on geometric/mathematical elements like points, lines, planes, and symbols. Even more experimental approaches like parametric shapes or procedural assemblies correspond poorly to architectural elements, and seldom lend themselves well to making conceptual changes that would allow exploration of design alternatives. Small wonder some architecture schools experience a division between computer and studio courses, or even between computer and studio faculty. Different ways of talking and thinking are involved. The concepts involved are often mutually exclusive. This paper discusses an attempt to address this conceptual mismatch, using what are termed “protean” (meaning “very changeable”) elements. These are high-level elements corresponding to architectural concepts like “wall,” or “dome.” They each have parameters appropriate for the particular type of element they represent, and produce the polyhedra necessary for graphics based on these parameters. A system is being implemented to allow models to be constructed using these elements. The protean elements form a loosely structured model, in which some elements hierarchically contain others, and some elements are essentially freestanding, being created and manipulated independently of other elements. Characteristics of protean element are discussed, including the underlying object-oriented structure, the relationship between elements and graphics, and functions associated with the objects. A scheme is explained whereby all parts of a design can be represented even when the design includes extremely unusual forms not conforming to predictable classes of elements. The necessary support framework is also discussed; general flow of the system and mechanisms for viewing the model and editing subcomponents are explained. The current status of the project, and intentions for future work are discussed. The project has been partially implemented, and the necessary framework to support the system is mostly complete.

series ACADIA
email
last changed 2022/06/07 07:52

_id a787
authors Kaga, A., Shimazu, Y., Yamauchi, T., Ishihara, H. And Sasada, T.
year 1998
title City Information Visualizer Using 3-D Model and Computer Graphics
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 193-202
doi https://doi.org/10.52842/conf.caadria.1998.193
summary 3-D models and computer graphics with its visual characteristics enables easier understanding of various information. Up until now 3-D models and computer graphics has not been used for the analysis of city information due to its high cost and the need for special techniques. Currently, we have discovered new technology in hyper medium based on network technology and lower costs. This paper focuses on the construction of an interactive and visual 3-D city information system, aiming at the ‘idea processor’ for research and analysis of city planning and market research. We have discovered the requirements necessary for the City Information Visualizer system. Using this technology we will construct the prototype system of the 3-D City Information Visualizer. This system is based on the personal computer and the Client/Server system. The system is then applied to practical city analysis. This paper presents the prototype system and its evaluation in a real project.
keywords City Planning, Computer Graphics, 3-D Model, VRML, JAVA
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:52

_id c38b
authors Kunz, J.C., Christiansen, T.R., Cohen, G.P., Jin, Y. and Levitt, R.E.
year 1998
title The Virtual Design Team
source Communications of The ACM, Vol. 41, No. 11, November, 1998
summary The long range goal of the Virtual Design Team" (VDT) research program is to develop computational tools to analyze decision making and communication behavior and thereby to support true organizational (re)engineering. This article introduces the underlying theory, the implementation of the theory as a computational model, and results from industrial test cases. Organization theory traditionally describes organizations only at an aggregate-level, describing and predicting the behavior of entire organizations in terms of general qualitative predictions. We define and implement a "micro" theory of the structure and behavior of components of organizations, explicitly representing activities, groups of people called "actors," and organizational structure and policies for project teams. A VDT model can be "run" by a discrete event simulation. Emergent aggregate model output behaviors include the predicted time to complete a project, the total effort to do the project, and a measure of process quality. More detailed model behaviors include the time-varying backlog of individual actors and the "exceptions" associated with activities. The results are detailed and specific, so they can guide specific managerial interventions in a project team and can support sensitivity studies of the relative impact of different organizational changes. We conclude that such a theory is tractable and predictive for complex but relatively routine, project-oriented design tasks. The application for which VDT offers unique new kinds of insights is where an organization is striving to shrink time to market dramatically for a product that is similar to ones it has previously developed. Reducing time to market dramatically almost always requires that previously sequential activities are executed more concurrently. In this situation, experienced managers can still correctly identify the required activities and estimate their durations and skill requirements; but they almost always underestimate the increased workload arising from exponentially higher coordination needs and the propagation of rework between the now highly concurrent activities. The VDT framework, which explicitly models information dependency and failure propagation between concurrent activities, has proven to be far more accurate, and to incorporate a wider range of parameters, than CPM/PERT process models for these fast-paced development projects."
series journal paper
last changed 2003/04/23 15:50

_id 489a
authors Matthews, K., Duff, S. and Corner, D.
year 1998
title A Model for Integrated Spatial and Structural Design of Buildings
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 123-132
doi https://doi.org/10.52842/conf.caadria.1998.123
summary Recent advances in computer graphics and 3D user interfaces have enabled the emergence of 3D sketch modeling as a viable approach to architectural design, especially in the early schematic phase. This paper describes how a system can be built and used which integrates the capabilities of a good structural analysis system in the user-friendly working environment of a design-oriented modeling program. The structure of a building model as seen by finite element algorithms is a schematic idealization of the building's physical structure into nodes, elements, internal releases, boundary conditions, and loads. The more familiar architectural model used for design visualization represents spatial elements such as roofs, floors, walls, and windows. Rather than treat these models independently, the structural model can be defined in relation to the architectural as a virtual model with inherited common characteristics and additional relational and attribute information, using feature-based geometry data structures to organize topological intelligence in the spatial model. This provides the basis for synchronous modification of structural and architectural aspects of the design.
keywords Structural Design, Spatial Design, Design Integration, Human-Computer Interaction, Feature-Based Modeling, Finite Element Analysis, Geometric Inference
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:58

_id e29c
authors McKinney, K. and Fischer, M.,
year 1998
title Generating, evaluating and visualizing construction schedules with CAD tools
source Automation in Construction 7 (6) (1998) pp. 433-447
summary Collaborative AEC technologies centering around component-based CAD models support architectural and structural perspectives. The construction perspective is often neglected because an important dimension for construction–time–is missing. Construction planners are forced to abstract CAD model building components into schedule models representing time. 4D-CAD (3D-CAD+time) removes this abstraction by linking a 3D building model and schedule model through associative relationships. Adding time to 3D-CAD models extends the use of CAD tools from the design phase to the construction phase. Although commercial 4D tools exist that allow planners to build 4D models and create graphic simulations of the construction process, these tools lack features to support analysis of these models, easy generation and manipulation of such models, and realistic visualizations of the construction process. This paper discusses these shortcomings, highlights requirements for CAD tools to support construction planning tasks, and describes our efforts to develop 4D tools that generate 4D+x models that more realistically represent the construction process.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_113308 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002