CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 541

_id ecaade03_059_29_russel
id ecaade03_059_29_russel
authors Russell, P., Stachelhaus, T. and Elger, D.
year 2003
title CSNCW: Computer Supported Non-Cooperative Work Barriers to Successful Virtual Design Studios
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 59-66
doi https://doi.org/10.52842/conf.ecaade.2003.059
summary The paper describes a design studio jointly undertaken by four Universities. With respect given to the groundbreaking work carried out by [Wojtowicz and Butelski (1998)] and [Donath et al 1999] and some of the problems described therein, the majority of the Studio partners had all had positive, if not exemplary experiences with co-operative studio projects carried out over the internet. The positive experience and development of concepts have been well documented in numerous publications over the last 5 years. A platform developed by one of the partners for this type of collaboration is in its third generation and has had well over 1000 students from 12 different universities in over 40 Projects. With this amount of experience, the four partners entered into the joint studio project with high expectations and little fear of failure. This experimental aspect of the studio, combined with the “well trodden” path of previous virtual design studios, lent an air of exploration to an otherwise well-worn format. Everything looked good, or so we thought. This is not to say that previous experiments were without tribulations, but the problems encountered earlier were usually spread over the studio partners and thus, the levels and distribution of frustration were more or less balanced. This raised a (theoretically) well-founded expectation of success. In execution, it was quite the opposite. In this case, the difficulties tended to be concentrated towards one or two of the partners. The partners spoke the same language, but came from different sets of goals, and hence, interpreted the agreements to suit their goals. This was not done maliciously, however the results were devastating to the project and most importantly, the student groups. The differing pedagogical methods of the various institutes played a strong role in steering the design critique at each school. Alongside these difficulties, the flexibility (or lack thereof) of each university’s calendar as well as national and university level holidays led to additional problems in coordination. And of course, (as if this was all not enough), the technical infrastructure, local capabilities and willingness to tackle technological problems were heterogeneous (to put it lightly).
keywords CSCW: Virtual Design Studio; Mistakes in Pedagogy
series eCAADe
email
more http://caad.arch.rwth-aachen.de
last changed 2022/06/07 07:56

_id f288
authors Bille, Pia
year 1999
title Integrating GIS and Electronic Networks In Urban Design and Planning
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 722-728
doi https://doi.org/10.52842/conf.ecaade.1999.722
summary In 1998 I undertook an inquiry into the use of information technology in Urban Design and Planning in Danish municipalities and among planning consultants. The aim was to find out who was working with the IT and for what purposes it was used. In education there seems to be barriers to a full integration of the new media, and I wanted to find out if that was also the case in the practise of architects and planners. Surprisingly I discovered that there was a computer on almost every desk, - but there were big differences in the use of the technology. The investigation described here is based on interviews with planners in selected municipalities and with urban planning consultants, and the results have been summarised in a publication.
keywords Urban Planning, Electronic Collaboration, GIS, Data Bases
series eCAADe
email
last changed 2022/06/07 07:54

_id d44c
authors Cheng, N.
year 1998
title Digital Identity in the Virtual Design Studio
source Constructing Identity: the Associated Collegiate Schools of Architecture (ACSA) 56th Annual Meeting Proceedings, Cleveland, Ohio
summary Internet tools most effectively connect diverse groups when individuals involved experience vital human connections. Online strangers are pulled into a community in which they can see a friendly face in the crowded stream of information. Strong self expression engages an audience and can result in personal interactions which reward getting beyond the technology. A group of individual profiles can coalesce to give colorful definition to team biases, strengths and weaknesses. This paper examines how the expression of identity has been a critical factor in the success of Internet design collaborations. First, it provides context on how these projects can improve architectural education by increasing relevance. Second, it identifies opportunities for individual and team expression gathered from a series of annual international design exercises known as the Virtual Design Studio. Third, it explains strategies for fostering student expression and interaction. Finally, it cites areas for future investigation.
series other
last changed 2003/04/23 15:50

_id 0272
authors Kokosalakis, Jen
year 1998
title Remote File Sharing for Community-led Local Agenda 21 Sustainability with Internet, Intranets and VideoConferencing
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 116-122
doi https://doi.org/10.52842/conf.ecaade.1998.116
summary This paper considers new opportunities for ease of remote file sharing through the Internet, Intranets and VideoConferencing, as facilitating opportunities for informed consumer intervention and greater accountability of the design. A remote file sharing experiment, [through a VideoConference link], of a 3D CAD estate model, collaboratively developed with a local resident?s association, is discussed. A different example looks at use of the Internet route by a small practice in the North West, developing QuickTime and QuickTimeVirtual Reality files for remote distribution and collaboration. The value of the full building object-orientated, data based model, [incorporating all related data and decisions from conception, client participation, project and facilities and life time management], is seen to offer an excellent vehicle for illustrating, negotiating and recording decisions. New international CAD standards for remote transfer and file sharing bring ease of use into the arena. Associated peripherals for remote file sharing through both Internet and video/teleconferencing, point to a transformation in the way we collaborate in the future. Signs from a broad band of businesses indicate that there is a clear understanding [in some circles] of the potential and the specific orientation of Web targeting, people-networking and dialogue. The key change is that those who understand this, build on the particular opportunity to contact and relate with any community of interest and to develop dialogue in a deeper, closer manner. So, we can see a strange phenomenon that the remoteness can actually bring a closeness of a new kind, as communities explore common interests. The paper considers how this may be the key to involving thousands of residents in a well-recorded dialogue, so bringing improved opportunities for meeting European standards in public accountability and community involvement in the development of Local Agenda 21 sustainability strategies.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/39kokosalakis/index.htm
last changed 2022/06/07 07:51

_id 1c6b
authors Mase, K., Sumi, Y. and Nishimoto, K.
year 1998
title Informal conversation environment for collaborative concept formation
source Community Computing: Collaboration over Global Information Networks, eds. T. Ishida. John Wiley & Sons
summary This chapter focuses on facilitating the early stages of community formation. We spend a great deal of time every day in informal conversations, which are very important for the early stages of forming various kinds of communities. People engaged in conversation will not only share information, but also try to listen to and understand others, and as well as work together to find common objectives. In the early stages of forming the communities, agreement on a common concept through such a process is an essential element in the bonding of the group. Conversation environments on networked computers, e.g., via e-mail, online chat, and news groups, eliminate the spatial and temporal constraints of forming these communities but allow for the reuse of accumulated dialogs from previous interactions. Moreover, a computerized environment can directly support information sharing and mutual understanding. Conventional computerized conversation support systems, however, often force their users to follow some predetermined conversation model, prepared by designers beforehand. Thus, it can be difficult to apply these systems to informal conversations. We are developing a system called AIDE (Augmented Informative Discussion Environment) that facilitates our informal daily conversations. It does not require users to provide additional information in designated forms during a conversation, but rather it provides functionality to enhance and support the informal conversation. AIDE features three main functions: the discussion viewer, the conversationalist agent and the personal desktop. Using these functions, the participants can attain mutual understanding, crystallize ideas, and share common concepts. AIDE is considered to be not only a tool for supporting informal conversation but also useful Communityware, especially for facilitating the initial stage of community formation. This chapter first discusses a model of the group thinking process and applies it to community formation. Then, the structure of the AIDE system is presented using a few example conversations to illustrate how the AIDE system can support communication between people. AIDE displays potential as communityware.
series other
last changed 2003/04/23 15:14

_id 12f5
authors Nam, Tek-Jin
year 1998
title An Investigation of Multi-user Design Tools for Collaborative 3-D Modeling Doctoral Colloquium
source Proceedings of ACM CSCW'98 Conference on Computer-Supported Cooperative Work 1998 p.420
summary The objective of this research is to help designers working in teams by providing an improved collaborative design environment. The focus is on the investigation into specific issues and requirements for the development of multi-user CAD systems for collaborative 3-D modeling. By examining means for incorporating shared design workspace into conventional design workspace, we propose new mechanisms to transform existing CAD tools into collaboration-aware systems. From an initial experimental study of the team design process and a series of prototype development of collaborative CAD systems, a theoretical framework has been proposed and applied to the new collaboration-aware design systems. The result of the research will lead to the new generation of design tools to support team design tasks improving efficiency and effectiveness of team working.
series other
last changed 2002/07/07 16:01

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cf9d
authors Yeung, C., Cheung, L., Yen, J. and Cheng, C.
year 1998
title Virtual Classroom for Architecture
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 93-102
doi https://doi.org/10.52842/conf.caadria.1998.093
summary Over the past few years, we have seen that the evolution of the Internet and World Wide Web technologies have significantly enhanced the global communication and collaboration. People, no matter where they are, are virtually getting closer and closer. The barriers that came from time and distance have been partially removed by the use of such technologies. Internet and WWW are not just technology, they are an environment or space. With such breakthrough in technologies, a new paradigm in education is there. The education very differently from what we have now. This paper presents an Internet-based environment to support teaching and learning in architecture education. We will discuss the design concept and how to integrate the technology and knowledge-based techniques to implement the learning environment for architecture students. Architecture is a very specific discipline which consists of the knowledge from arts, sciences, engineering, and more. One of the focuses in architecture education is to teach how to express and communicate design ideas with the multimedia or other technologies, such as, virtual reality (VR). A case study presented in this paper is about how to deliver and present the ancient Chinese temples and its bracket set systems from the server to the browsers to support distance teaching. That is, students and teachers may not be in the same location, but they are able to watch the same objects and to exchange ideas. We will discuss how to use multimedia technologies to illustrate how a temple and its bracket set differ from dynasties to dynasties and introduce its basic properties to the viewers. Moreover, we will discuss how we organize and handle 3-dimensional objects with such system. Many people are still arguing about whether Internet-based teaching or a real classroom setting is better. We are not implying that Internet-based teaching is superior or predicting that it will dominate the teaching in the near future. However, we strongly believe that it is just another alternative to express and represent architectural thinking to over some of the barriers that come from time and distance. We believe, that it is always true, that the Internet-based teaching may provide both teachers and learners greater flexibility and to support more International collaboration. That is, regardless where the students or teachers are, they can always participate in learning or teaching and make teaching and learning much more rich and interesting.
keywords Virtual Classroom
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:57

_id 029f
authors Bermudez, Julio and King, Kevin
year 1998
title Media Interaction & Design Process: Establishing a Knowledge Base
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 6-25
doi https://doi.org/10.52842/conf.acadia.1998.006
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. Analog systems of architectural production use tracing paper, vellum, graphite and ink, clipboard, clay, balsa wood, plastic, metal, etc. Analog systems have also been termed ‘handmade’, ‘manual’, ‘material’ or ‘physical’. Digital systems of architectural production use scanning, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc. Digital systems have also been called ‘electronic’, ‘computer-aided’, ‘virtual’, etc. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not been sufficiently codified, cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses this shortcoming by bringing together reported experiences from diverse researchers over the past decade. This summary is informed by more than three years of continuous investigation in the impacts of analog-digital conversations in the design process. The goal is to establish a state-of-the-art common foundation that permits instructors, researchers and practitioners to refer to, utilize, test, criticize and develop. An appendix is included providing support for the paper’s arguments.

series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2003_a1-2
id caadria2003_a1-2
authors Bunyavipakul, Monchai and Charoensilp, Ekasidh
year 2003
title Designing the Virtual Design Studio System for Collaborative Work on Pda Collaborative Works Anytime, Anywhere
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 43-54
doi https://doi.org/10.52842/conf.caadria.2003.043
summary This research presents the collaboration in the VDS system through a microcomputer technology- a PDA (Personal Digital Assistants). Architect can collaborate anytime anyplace via VDS, a substitution to an old system that requires a specific location to work on. This research has studied and analyzed the format and the limitation of collaboration between PDA and Personal Computer, the wireless communication technology, and the Web Service technology, which enable different devices to share information through the Internet Network. The work process and the studied information have been used to develop a Web Application, a collaboration tool for a team of architect and designer. This Web Application has been tested in a renovation project, a clubhouse for a scuba diving place The objective of this research is to become a guideline of collaboration in architectural design work through Smart Object in order to serve the coming Ubiquitous era (Weiser, 1998)
series CAADRIA
email
last changed 2022/06/07 07:54

_id e6ca
authors Curry, Michael
year 1998
title Digital Places: Living With Geographic Information Technologies
source N.Y.: Routledge
summary The last twenty-five years have seen major changes in the nature and scope of geographical information. This has happened in one way in society at large, where computers, satellites and global positioning systems have made geographical information more extensive, more detailed and more available. It has happened in another way within the university, where rapidly evolving geographic information systems have been touted as tools useful in a wide range of disciplines, tools that will resolve problems as different as the nature of global climate change and the routing of mail. In both settings the move from manual to computer-based systems is viewed as having a natural trajectory, from less powerful to more powerful technologies. These systems are held to be increasingly able to model and represent all that is important in geographical knowledge and behaviour. They are seen as fitting into and supporting traditional scientific and social practices and institutions. Digital Places: Living with Geographic Information Technologies shows that on each score the systems have been misunderstood and their impacts underestimated. By offering an understanding of Geographic Information Systems within the social, economic, legal, political and ethical contexts within which they exist, the author shows that there are substantial limits to their ability to represent the very objects and relationships, people and places, that many believe to be most important. Focusing on the ramifications of GIS usage, Digital Places shows that they are associated with far-reaching changes in the institutions in which they exist, and in the lives of those they touch. In the end they call for a complete rethinking of basic ideas, like privacy and intellectual property and the nature of scientific practice, that have underpinned public life for the last one hundred years.
series other
last changed 2003/04/23 15:14

_id ddss9815
id ddss9815
authors Cutler, Lorraine M.
year 1998
title Prototypical Laboratory Design to Support Learning and Teaching
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Collaboration between designers and scientists is an unusual combination to undertake the prototypical design of a teaching laboratory funded by Howard Hughes Medical Institute. The zoologists are developing a cooperative learning and interactive teaching pedagogy to make learningscience a process of critical inquiry and discovery. The industrial and interior designers are paying attention to the design issues of function and environmental support for teaching and doing the work required in a three-hour, hands-on beginning science learning space. Using both qualitative andquantitative research methods, the designers are able to determine a framework for making design decisions in prototypical beginning science environments. This framework is being developed as a guideline for designing similar environments at other institutions of higher learning. Videotape analysis precedes the research to uncover the underlying problems of the existing space and to formulate the questions for the research. Elements of a case study and an evaluative study integratewith the design process to form the basis of an intensive investigation of design issues for a beginning science teaching laboratory. Using two pretests as a baseline, the posttest data evaluates the success orfailure of the prototypical design. Both the pretests and the posttest evaluate the physical attributes of the old and new learning environment related to a beginning laboratory course in Zoology at Arizona State University.
series DDSS
last changed 2003/08/07 16:36

_id 64c9
authors Dannettel, Mark E. and Bertin, Vito
year 1998
title Integrating Electronic Media into the Architecture Studio -A Teaching Development Grant at the Chinese University of Hong Kong.
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 31-38
doi https://doi.org/10.52842/conf.caadria.1998.031
summary Increasingly, architecture students and instructors are exposed to a widening array of softwares, hardwares, and strategies for the production and representation of architectural work. In an effort to promote the effective use of these tools within design education, instructors need to develop strategies for implementing them into the design studios. A teaching development grant which has been received by the Department of Architecture at CUHK is entitled Integrated Media Design Studio. This investigation involves multiple instructors, and levels of design studios. It provides an environment of a wide range of available equipment for producing, evaluating, documenting, and communicating architectural work in the studio. In addition to increasing the effective use of technology resources, and also raising the quality of studio instruction, this teaching development grant aims to create opportunities to further integrate other courses within the studio environment.
keywords Multimedia, Architecture, Studio, Education
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:55

_id 1d83
authors Dodge, M., Doyle, S. and Smith, A.
year 1998
title Visual Communication in Urban Planning and Urban Design
source Working Paper 2; Centre for Advanced Spatial Analysis Working Papers; London; June 1998
summary This Case Study documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web (WWW). First, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. The use of Virtual Worlds and their role in visualising urban form within multi-user environments is reviewed. The use of Virtual Worlds is developed into a study of the possibilities and limitations of Virtual Internet Design Arena's (ViDA's), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDA's is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan. Secondly, the role of photorealistic media in the process of communicating plans is examined. The process of creating photorealistic media is documented, and examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is that, although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling in the creation of Augmented Reality is reviewed. Augmented Reality is seen to provide an important step forward in the ability quickly and easily to visualise urban planning and urban design information. Third, the role of visual communication of planning data through GIS is examined in terms of desktop, three dimensional, and Internet based GIS. The evolution to Internet GIS is seen as a critical component in the development of virtual cities that will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality. Finally, a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design.
series other
last changed 2003/04/23 15:50

_id de62
authors Eriksson, Joakim
year 1998
title Planning of Environments for People with Physical Disabilities Using Computer Aided Design
source Lund Institute of Technology, School of Architecture
summary In the area of environment adaptations for people with physical disabilities, it is of vital importance that the design is optimized considering the human-environment interactions. All involved persons in such a planning process must be given sufficient support in understanding the information, so that everyone can participate actively. There is an apparent risk that discussions will be kept between experts, due to difficulties in understanding the complex and technical adaptation issues. This thesis investigates the use of computer-based tools for planning/designing environments for physically disabled people. A software prototype, and a method to use such a tool in the planning process, was developed and evaluated, based on the findings from six case studies of real planning situations. The case studies indicated that although such a tool would support the design, as well as the dialog between the participants, a certain level of technical and economical efficiency must be obtained. To facilitate the professional planner's work, an important issue is to maintain a large library of 3D objects. With the latest prototype implementation, it was found that such a planning tool can be produced, even when using consumer-oriented computers. One previous critical factor, interactive manipulation of 3D objects, can now be achieved if utilizing modern graphic cards with 3D acceleration. A usability test was performed to evaluate the prototype's basic operations, involving two groups of future users: five occupational therapist students, and four persons with major physical impairments. It was found that although the usability was satisfactory for the basic tasks, several items needed to be improved or added in future versions. It is important with an integrated support for manikins, in order to evaluate, e.g., wheelchair accessibility, reach ability, positioning of handrails, etc. This thesis reviews and compiles published anthropometrical and biomechanical data into a uniform segment-by-segment structure, in order to aid the design and modifications of manikins. The compilation was implemented as a spreadsheet document. An MRI investigation of the neck-shoulder region was performed on 20 healthy Scandinavian, female volunteers, measuring various musculoskeletal properties. These measurements can be used for further refinements of manikin specifications and biomechanical models.
keywords Rehabilitation; Disability; Adaptation; Participatory Planning; Design Tool; 3D Graphics; Computer Aided Design; Virtual Reality; Manikin; Anthropometry; Biomechanics; Magnetic Resonance Imaging; Cervical Spine Kinematics
series thesis:PhD
email
more http://www.lub.lu.se/cgi-bin/show_diss.pl?db=global&fname=tec_250.html
last changed 2003/02/26 09:21

_id 9bee
authors Gerzso, J. Michael
year 2001
title Automatic Generation of Layouts of an Utzon Housing System via the Internet
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 202-211
doi https://doi.org/10.52842/conf.acadia.2001.202
summary The article describes how architectural layouts can be automatically generated over the Internet. Instead of using a standard web server sending out HTML pages to browser client, the system described here uses an approach that has become common since 1998, known as three tier client/server applications. The server part of the system contains a layout generator using SPR(s), which stands for “Spatial Production Rule System, String Version”, a standard context- free string grammar. Each sentences of this language represents one valid Utzon house layout. Despite the fact that the system represents rules for laying out Utzon houses grammatically, there are important differences between SPR(s) and shape grammars. The layout generator communicates with Autocad clients by means of an application server, which is analogous to a web server. The point of this project is to demonstrate the idea that many hundreds or thousands of clients can request the generation of all of the Utzon layouts simultaneously over the Internet by the SPR(s) server, but the server never has to keep track when each client requested the generation of all of the layouts, or how many layouts each client has received.
keywords Internet, Spatial-Production-Rules Grammars, Utzon
series ACADIA
email
last changed 2022/06/07 07:51

_id 2d0a
authors Hirschberg, Urs
year 1998
title Fake.Space - An Online Caad Community and a Joint Enquiry into the Nature of Space
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 281-290
doi https://doi.org/10.52842/conf.caadria.1998.281
summary fake.space was an elective CAAD course in which the (over 120) participating students were an online community. They jointly built up the fake.space node system, a database in which the individual contributions were linked and could be viewed and navigated through in various ways. The topics of the nodes were different aspects and concepts of space. The paper describes the conceptual as well as some technical aspects of this teaching experiment and evaluates its outcome.
keywords CAAD education, Collaborative Work, Database-Support, On-Line Community, Virtual Space, Narrative Structures
series CAADRIA
email
more http://space.arch.ethz.ch/ss97/
last changed 2022/06/07 07:50

_id 50a1
authors Hoffman, Donald
year 1998
title Visual Intelligence
source Norton Publishing, New York
summary After his stroke, Mr. P still had outstanding memory and intelligence. He could still read and talk, and mixed well with the other patients on his ward. His vision was in most respects normal---with one notable exception: He couldn't recognize the faces of people or animals. As he put it himself, "I can see the eyes, nose, and mouth quite clearly, but they just don't add up. They all seem chalked in, like on a blackboard ... I have to tell by the clothes or by the voice whether it is a man or a woman ...The hair may help a lot, or if there is a mustache ... ." Even his own face, seen in a mirror, looked to him strange and unfamiliar. Mr. P had lost a critical aspect of his visual intelligence. We have long known about IQ and rational intelligence. And, due in part to recent advances in neuroscience and psychology, we have begun to appreciate the importance of emotional intelligence. But we are largely ignorant that there is even such a thing as visual intelligence---that is, until it is severely impaired, as in the case of Mr. P, by a stroke or other insult to visual cortex. The culprit in our ignorance is visual intelligence itself. Vision is normally so swift and sure, so dependable and informative, and apparently so effortless that we naturally assume that it is, indeed, effortless. But the swift ease of vision, like the graceful ease of an Olympic ice skater, is deceptive. Behind the graceful ease of the skater are years of rigorous training, and behind the swift ease of vision is an intelligence so great that it occupies nearly half of the brain's cortex. Our visual intelligence richly interacts with, and in many cases precedes and drives, our rational and emotional intelligence. To understand visual intelligence is to understand, in large part, who we are. It is also to understand much about our highly visual culture in which, as the saying goes, image is everything. Consider, for instance, our entertainment. Visual effects lure us into theaters, and propel films like Star Wars and Jurassic Park to record sales. Music videos usher us before surreal visual worlds, and spawn TV stations like MTV and VH-1. Video games swallow kids (and adults) for hours on end, and swell the bottom lines of companies like Sega and Nintendo. Virtual reality, popularized in movies like Disclosure and Lawnmower Man, can immerse us in visual worlds of unprecedented realism, and promises to transform not only entertainment but also architecture, education, manufacturing, and medicine. As a culture we vote with our time and wallets and, in the case of entertainment, our vote is clear. Just as we enjoy rich literature that stimulates our rational intelligence, or a moving story that engages our emotional intelligence, so we also seek out and enjoy new media that challenge our visual intelligence. Or consider marketing and advertisement, which daily manipulate our buying habits with sophisticated images. Corporations spend millions each year on billboards, packaging, magazine ads, and television commercials. Their images can so powerfully influence our behavior that they sometimes generate controversy---witness the uproar over Joe Camel. If you're out to sell something, understanding visual intelligence is, without question, critical to the design of effective visual marketing. And if you're out to buy something, understanding visual intelligence can help clue you in to what is being done to you as a consumer, and how it's being done. This book is a highly illustrated and accessible introduction to visual intelligence, informed by the latest breakthroughs in vision research. Perhaps the most surprising insight that has emerged from vision research is this: Vision is not merely a matter of passive perception, it is an intelligent process of active construction. What you see is, invariably, what your visual intelligence constructs. Just as scientists intelligently construct useful theories based on experimental evidence, so vision intelligently constructs useful visual worlds based on images at the eyes. The main difference is that the constructions of scientists are done consciously, but those of vision are done, for the most part, unconsciously.
series other
last changed 2003/04/23 15:14

_id ddss9828
id ddss9828
authors Holmberg, Stig C.
year 1998
title Anticipation in Evaluation and Assessment of Urban and Regional Plans
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary In order to start a move toward better computer based supporting tools for the assessment of urban and regional plans, a new research and development endeavour is proposed. In so doing, anticipation andanticipatory computing, i.e. a technique applying modelling and simulation, is found to be an interesting and promising point of departure. Hence, a fuzzy cellular automata computer model (STF) for simulation and anticipation of geographical or physical space is constructed. The main idea is to map anurban plan onto the STF for its assessing. STF has a normalised and continuous, i.e. fuzzy, system variable while both the time and space dimensions take on discrete values. Further, while ordinary cellularautomata use local rules, global ones are employed in STF, i.e. there is a total interdependence among all the cells of the automata. Outcomes of STF can be interpreted more as possible future states than exact predictions. Preliminary results seem to be well in line with main characteristics of planned urban or regional geographical spaces. Further, for the managing of multi-criteria choice situations, a fuzzy procedure – the Ordered Weighted Average (OWA) procedure – with continuous control over the degree of ANDOR-ness and with independent control over the degree of tradeoff, is proposed.
keywords Geographical space, Anticipatory Computing, Cellular Automata, Spatio Temporal Fuzzy Model (STF)
series DDSS
last changed 2003/08/07 16:36

_id 1e73
authors Jeng, T. and Eastman, C.M.
year 1998
title A database architecture for design collaboration
source Automation in Construction 7 (6) (1998) pp. 475-483
summary The objective of this paper is to outline new facilities within an integrated environment supporting design collaboration. The details of the architecture and issues regarding explicit support for collaboration mechanisms are presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_926500 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002