CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ga9809
id ga9809
authors Kälviäinen, Mirja
year 1998
title The ideological basis of generative expression in design
source International Conference on Generative Art
summary This paper will discuss issues concerning the design ideology supporting the use and development of generative design. This design ideology is based on the unique qualities of craft production and on the forms or ideas from nature or the natural characteristics of materials. The main ideology presented here is the ideology of the 1980´s art craft production in Finland. It is connected with the general Finnish design ideology and with the design ideology of other western countries. The ideology for these professions is based on the common background of design principles stated in 19th century England. The early principles developed through the Arts and Crafts tradition which had a great impact on design thinking in Europe and in the United States. The strong continuity of this design ideology from 19th century England to the present computerized age can be detected. The application of these design principles through different eras shows the difference in the interpretations and in the permission of natural decorative forms. The ideology of the 1980ïs art craft in Finland supports the ideas and fulfilment of generative design in many ways. The reasons often given as the basis for making generative design with computers are in very many respects the same as the ideology for art craft. In Finland there is a strong connection between art craft and design ideology. The characteristics of craft have often been seen as the basis for industrial design skills. The main themes in the ideology of the 1980´s art craft in Finland can be compared to the ideas of generative design. The main issues in which the generative approach reflects a distinctive ideological thinking are: Way of Life: The work is the communication of the maker´s inner ideas. The concrete relationship with the environment, personality, uniqueness, communication, visionary qualities, development and growth of the maker are important. The experiments serve as a media for learning. Taste and Aesthetic Education: The real love affair is created by the non living object with the help of memories and thought. At their best objects create the basis in their stability and communication for durable human relationships. People have warm relationships especially with handmade products in which they can detect unique qualities and the feeling that the product has been made solely for them. Counter-culture: The aim of the work is to produce alternatives for technoburocracy and mechanical production and to bring subjective and unique experiences into the customerïs monotonious life. This ideology rejects the usual standardized mass production of our times. Mythical character: There is a metamorphosis in the birth of the product. In many ways the design process is about birth and growth. The creative process is a development story of the maker. The complexity of communication is the expression of the moments that have been lived. If you can sense the process of making in the product it makes it more real and nearer to life. Each piece of wood has its own beauty. Before you can work with it you must find the deep soul of its quality. The distinctive traits of the material, technique and the object are an essential part of the metamorphosis which brings the product into life. The form is not only for formïs sake but for other purposes, too. You cannot find loose forms in nature. Products have their beginnings in the material and are a part of the nature. This art craft ideology that supports the ideas of generative design can be applied either to the hand made crafts production or to the production exploiting new technology. The unique characteristics of craft and the expression of the material based development are a way to broaden the expression and forms of industrial products. However, for a crafts person it is not meaningful to fill the world with objects. In generative, computer based production this is possible. But maybe the production of unique pieces is still slower and makes the industrial production in that sense more ecological. People will be more attached to personal and unique objects, and thus the life cycle of the objects produced will be longer.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9807
id ga9807
authors Loocke, Philip Van
year 1998
title Consequences for practical aesthetics and for aesthetical theory of the insertion of principles from quantum theory in cellular automata
source International Conference on Generative Art
summary A cellular automaton that includes some principles from quantum theory is considered. The automaton generates forms of an aesthetic nature. At every time step, a form grows with a single cell. This cell is selected with a selection probability that is determined by an amplitude. If the algorithm is run with selection of the cell of maximal amplitude at every time step, a type of form results that is called 'platonic'. Such forms typically have higher aesthetic complexity than their non-platonic counterparts. The case of selection probabilities determined by squares of amplitudes has a strong analogy with quantum theory. This analogy is elaborated by consideration of forms that have mutual correlations. These correlations can be of a classical nature, of a quantum mechanical type, or of a type that is termed 'super-correlation'.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e78b
authors Akin, O. and Akin, C.
year 1998
title On the process of creativity in puzzles, inventions, and designs
source Automation in Construction 7 (2-3) (1998) pp. 123-138
summary The most common means of identifying creativity has been through its products. In architecture, music, writing, art, even puzzle solving and scientific discovery, the prerequisite for considering creativity has been the presence of a creative product. Alternatively, anecdotal descriptions have been used to identify processes that are considered creative. Many scientific discoveries have been linked to a sudden realization or unexplainable revelation punctuated with the AHA! response. Outside of the creative product itself and the AHA! response, the kinds of concrete evidence that point to the process of creativity are precious few. Our purpose here is to further examine these phenomena and develop hypotheses about the nature of the creative process. Our ultimate aim is to develop a general theory of creativity. We intend to base this theory on a set of conditions that are necessary for the creative process to take place in a number of domains: puzzles, scientific discoveries, and design, with special emphasis on architectural design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 0471
authors Bruton, B.
year 1998
title Grammars and Pedagogy - Towards new Media Art and Design Education Strategies
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 385-394
doi https://doi.org/10.52842/conf.caadria.1998.385
summary The impact of computational grammatical design on pedagogy has received little attention in art education due to the dominant modes of traditional approaches to art and design education. This paper explores the pedagogical implications of grammatical strategies using computers for judgements of design within an art educational setting. Grammatical strategies are studied for their effect on the judgements of novice artists in a new media educational context. It is argued that concepts of grammar and views of contingency are used in a variety of senses in the conception and form making of artists; that finding methods for discussing and utilising complex visual information is aided by grammatical formalisation; that these strategies are evidently effective at both early and mature stages of the realisation of a project. The research explores the relation between computer and art on three levels in which grammar is used: as a sense of grammar, as a computational paradigm and as a description of a kind of computer program. Grammatical formalism is apparent in two dimensional linear and non-linear animations using Photoshop, Premiere and Director, and in solid modelling programs such as Extreme 3D, Form Z, Strata Studio Pro, 3D Studio Max and SoftImage. Web site construction also impacts on the judgements of 2D and 3D design. Computational grammatical programs generate forms that reflect alternative understandings of art and design. Art practise is defined in terms of developing consistent and appropriate design language for the contingency at hand. Form making using grammatical tools, both recursive and array types, is discussed in terms of their applicability and educative value. Reference is made to formal qualities for critique and strategic capability of alternative pedagogy for generation of forms. Examples provided show how simple rule sets develop into complex derivational sequences that challenge traditional strategies for computer imaging. The paper demonstrates the value of a sense of grammars for novice art and design practitioners by using first hand examples of experimental work at the South Australian School of Art, University of South Australia. For novice artists and designers, grammars in conjunction with reflective practice is offered as a useful mind set that supports an interest in actively defining a new kind of art. Illustrations provided show the utility of a contingent sense of grammar for pedagogy and highlights the significant role of grammar in pedagogy.
keywords Grammar, Pedagogy, Computer, Art, Design
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id 40db
authors Chambers, Tom and Wood, John B.
year 1998
title Information Technology in the Building Design Engineering Studio
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 26-30
doi https://doi.org/10.52842/conf.ecaade.1998.026
summary This paper reports on the activities of CADET in the design studio environment and in a variety of community contexts with the objective of developing a strategy for teaching design within the context of design, art, architecture and engineering. It begins with an outline of earlier design projects, in a variety of traditional media and in CAAD at several levels within the Undergraduate programme at the University of Strathclyde together with community organisations. It then outlines a model with a number of strands that explore the principles of visual communication which are fundamental to both the development and communication of design ideas. The report will place these activities in the context of developments in education and the wider sphere of cultural heritage, which ultimately inform understanding and knowledge of our architectural and design heritage. It will highlight and explore some important ideas that inform our judgment of aesthetic forms and refer students to relevant texts and precedents in art, design, engineering and architecture.
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/29chambers/index.htm
last changed 2022/06/07 07:56

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9811
id ga9811
authors Feuerstein, Penny L.
year 1998
title Collage, Technology, and Creative Process
source International Conference on Generative Art
summary Since the turn of the twentieth century artists have been using collage to suggest new realities and changing concepts of time. Appropriation and simulation can be found in the earliest recycled scraps in Cubist collages. Picasso and Braque liberated the art world with cubism, which integrated all planes and surfaces of the artists' subjects and combined them into a new, radical form. The computer is a natural extension of their work on collage. The identifying characteristics of the computer are integration, simultaneity and evolution which are inherent in collage. Further, the computer is about "converting information". There is something very facinating about scanning an object into the computer, creating a texture brush and drawing with the object's texture. It is as if the computer not only integrates information but different levels of awareness as well. In the act of converting the object from atoms to bits the object is portrayed at the same conscious level as the spiritual act of drawing. The speed and malleability of transforming an image on the computer can be compared to the speed and malleability of thought processes of the mind. David Salle said, "one of the impulses in new art is the desire to be a mutant, whether it involves artificial intelligence, gender or robotic parts. It is about the desire to get outside the self and the desire to trandscend one's place." I use the computer to transcend, to work in different levels of awareness at the same time - the spiritual and the physical. In the creative process of working with computer, many new images are generated from previous ones. An image can be processed in unlimited ways without degradation of information. There is no concept of original and copy. The computer alters the image and changes it back to its original in seconds. Each image is not a fixed object in time, but the result of dynamic aspects which are acquired from previous works and each new moment. In this way, using the computer to assist the mind in the creative processes of making art mirrors the changing concepts of time, space, and reality that have evolved as the twentieth century has progressed. Nineteenth-century concepts of the monolithic truth have been replaced with dualism and pluralism. In other words, the objective world independent of the observer, that assumes the mind is separate from the body, has been replaced with the mind and body as inseparable, connected to the objective world through our perception and awareness. Marshall Mcluhan said, "All media as extensions of ourselves serve to provide new transforming vision and awareness." The computer can bring such complexities and at the same time be very calming because it can be ultrafocused, promoting a higher level of awareness where life can be experienced more vividly. Nicholas Negroponte pointed out that "we are passing into a post information age, often having an audience of just one." By using the computer to juxtapose disparate elements, I create an impossible coherence, a hodgepodge of imagery not wholly illusory. Interestingly, what separates the elements also joins them. Clement Greenberg states that "the collage medium has played a pivotal role in twentieth century painting and sculpture"(1) Perspective, developed by the renaissance archetect Alberti, echoed the optically perceived world as reality was replaced with Cubism. Cubism brought about the destruction of the illusionist means and effects that had characterized Western painting since the fifteenth century.(2) Clement Greenberg describes the way in which physical and spiritual realities are combined in cubist collages. "By pasting a piece of newspaper lettering to the canvas one called attention to the physical reality of the work of art and made that reality the same as the art."(3) Before I discuss some of the concepts that relate collage to working with computer, I would like to define some of the theories behind them. The French word collage means pasting, or gluing. Today the concept may include all forms of composite art and processes of photomontage and assemblage. In the Foreword on Katherine Hoffman's book on Collage Kim Levin writes: "This technique - which takes bits and pieces out of context to patch them into new contexts keeps changeng, adapting to various styles and concerns. And it's perfectly apt that interpretations of collage have varied according to the intellectual inquiries of the time. From our vantage point near the end of the century we can now begin to see that collage has all along carried postmodern genes."(4) Computer, on the other hand is not another medium. It is a visual tool that may be used in the creative process. Patrick D. Prince's views are," Computer art is not concrete. There is no artifact in digital art. The images exist in the computer's memory and can be viewed on a monitor: they are pure visual information."(5) In this way it relates more to conceptual art such as performance art. Timothy Binkley explains that,"I believe we will find the concept of the computer as a medium to be more misleading than useful. Computer art will be better understood and more readily accepted by a skeptical artworld if we acknowledge how different it is from traditional tools. The computer is an extension of the mind, not of the hand or eye,and ,unlike cinema or photography, it does not simply add a new medium to the artist's repertoire, based on a new technology.(6) Conceptual art marked a watershed between the progress of modern art and the pluralism of postmodernism(7) " Once the art is comes out of the computer, it can take a variety of forms or be used with many different media. The artist does not have to write his/her own program to be creative with the computer. The work may have the thumbprint of a specific program, but the creative possibilities are up to the artist. Computer artist John Pearson feels that,"One cannot overlook the fact that no matter how technically interesting the artwork is it has to withstand analysis. Only the creative imagination of the artist, cultivated from a solid conceptual base and tempered by a sophisticsated visual sensitivity, can develop and resolve the problems of art."(8) The artist has to be even more focused and selective by using the computer in the creative process because of the multitude of options it creates and its generative qualities.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 612c
authors Madrazo, Leandro
year 1998
title Computers and Architectural Design: Going Beyond the Tool
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 44-57
doi https://doi.org/10.52842/conf.acadia.1998.044
summary More often than not, discussions taking place in specialised conferences dealing with computers and design tend to focus mostly on the tool itself. What the computer can do that other tools cannot, how computers might improve design and whether a new aesthetic would result from the computer; these are among the most recurrent issues addressed in those forums. But, by placing the instrument at the center of the debate, we might be distorting the nature of design. In the course KEYWORDS, carried out in the years 1992 and 1993 at the ETH Zurich, the goal was to transcend the discourses that concentrate on the computer, integrating it in a wider theoretical framework including principles of modern art and architecture. This paper presents a summary of the content and results of this course.

series ACADIA
email
last changed 2022/06/07 07:59

_id ga9813
id ga9813
authors Pontecorvo, Michael Steven
year 1998
title Designing the Undesigned: Emergence as a tool for design
source International Conference on Generative Art
summary Design, as an act and a result, is a natural part of the larger biological context in which we live. It is both a behavior and a tangible side effect of the organic system from which it arises. A design can be characterized as a physical exemplar of the concept of memes, the 'genetic' building blocks of ideas or units of cultural transmission. In this capacity, design has served to extend humankind's reach and ensure and enrich humankind's survival in the full range and variability of conditions the Earth has to offer. In a very real sense, design has 'evolved' its own rich ecosystem, with a robust diversity of elements, dynamics, and interrelationships rivaling that of the organic system from which it derives. In the ecology of design, designs obey laws analogous to the laws of survival and selection that organisms in nature obey. Given the recent advances in understanding and modeling of the biological and physical systems, it is not surprising that artists and designers are now turning to these models as a 'new' resource for the conceptualization and design of structured artifacts and spaces. While there are many fundamental technical issues surrounding development and application of generative models and processes, the relationship of artist to the process of creation is a central issue in the scaling up and widespread accessibility/acceptance of the generative approach. This paper will present a set of observations from the perspective of a small company of artist/ technologists trying to bridge the commercial and artistic application of generative processes. Specifically, the paper will explore some approaches to the designer/system relationship and process control metaphor, the balancing of serendipity and design convergence, the definitions and representations of design spaces, and finally, present some ideas about the future prospects and promising new techniques for generative design.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9801
id ga9801
authors Soddu, Celestino
year 1998
title Argenia, a Natural Generative Design
source International Conference on Generative Art
summary Leon Battista Alberti defines the Beauty of Architecture "a concert of all the parts together, performed with proportion and logic in something in which it is possible to find again each event, in a modality that will not allow the inserting, extracting out or changing anything without decreasing its Beauty". With generative art we can approach, directly, this complex paradigm of proportions and logic, and we can directly design the Beauty, or better our idea of beauty, before the realization of each single possible artificial event. This is the heart of generative approach. The Generative Art work for the beauty, in the sense of the humanistic approach of Renaissance, because the generative code, which is the project of generative design, is the real structure of the idea. It defines how to concert all the parts and the dynamic relationship among these parts in the evolution of complexity. The generative project defines which is the law of proportion and which logic the dynamic evolution will follow. All the events that this code can generate will be, in humanistic sense, beautiful, or, if we prefer, will belong and represent our Idea of world. And more. The generative art produces events that are unique and complex. The uniqueness and complexity are strongly related one each other. As in Nature, each event is generated through an artificial life, which, as in the natural life, produces uniqueness, identity and complexity during a identifiable time. This complexity is a natural-like complexity. We can recognise, in the artificial ware we produce through this generative approach, the harmony and the beauty of the natural-like complexity that refers to the Humanistic approach of Renaissance: Man, Geometry, and Nature as references for "the harmony which is not thought as an individual caprice but as conscious reasoning." (L.B.Alberti, De re aedificatoria).
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddss9806
id ddss9806
authors Besio, M., Frixione, M. and Pedemonte, O.
year 1998
title GIS technologies in the transfer of theknowledge project to the plan projectmultiple representation of the environmental spaces
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary An analysis is made of the relation between the conceptualand paradigmatic level of GIS technologies and the new forms of plan, whichmake environment the center of attention. The intention is to study newcriteria for zoning able to give contextual representations of theterritorial, environmental and landscape aspects of the geographical space,and also to study new legislative principles, able to establish integratedrules for theprojecting of soil uses, the safeguarding and recovery ofenvironmental systems and the tutelage and boosting of the landscape. The experimentation of GIS (Geographical Information System)technologies aims at the construction of systems helping to make decisionsfor the control of the environmental and landscape aspects of theterritory. An analysis is made of the ways in which there are formulated thedescriptions of the various aspects of the environment: the conceptsthrough which knowledge is expressed, the languages used forrepresentations, the cognitive models adopted. GIS technologies have made it possible to represent in an explicitmanner the paradigms underlying the various models of knowledge.Specifically, the following cognitive models have been developed:- ecological models of nature- ecological models of human settlement- ecological models of inhabitants’ mental perceptions
series DDSS
last changed 2003/11/21 15:16

_id 07c5
authors Burry, Mark
year 1998
title Handcraft and Machine Metaphysics
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 41-50
doi https://doi.org/10.52842/conf.ecaade.1998.041
summary As the cost of 3D digitisers drops and PC price performance rises, opportunities for hand - computer co-operation improve. Architectural form may now be experimentally moulded or carved using manual techniques in close association with the computer. At any stage the model can be mechanically digitised and translated to a computer database for explorations that go beyond simple physical manipulation. In the virtual environment, the resulting forms can be rationalised using an ordering geometry or further de-rationalised. This potential for debasing intuitive, sensually haptic and responsive handwork through its translation into numerically cogent formulations is risky business. But it may also bring new and unlikely rewards. This paper considers the implications and aesthetics of negotiations between handcraft and consecutive or synchronous computer digitalisation of intentions. Two situations will be discussed and compared. The first is the nature of computer modelling and its representation per se, and the second is the relevance of using handcraft as a sponsor for computer-based manipulation and morphological experimenting.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:54

_id ga9815
id ga9815
authors Annunziato, M.
year 1998
title The Nagual Experiment
source International Conference on Generative Art
summary This paper refers to an experiment about the use of artificial life structures in order to simulate/evocate natural or artificial patterns. These patterns are the effect of the self-organisation of a population of individuals during their process of development and growth. Although the local dynamics and interactions have a chaotic (partially random) behaviour, the global dynamics of the population produces interesting and well structured patterns. The graphic images generated with these procedures show a wide variety of structures in terms of life (growth) simulations and graphic geometries.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 254a
authors Belz, C., Jung, H., Santos, L., Strack, R., and Latva-Rasku, P.
year 1998
title Handling of Dynamic 2D/3-D Graphics in Narrow-Band Mobile Services
source Virtual Worlds on the Internet, IEEE Computer Society, pp. 147-156
summary The factors limiting the efficient delivery and presentation of multimedia material in the cellular environment are, among others, the low bandwidth of the transmission channel(s) and the modest capabilities of truly mobile terminals. The ACTS 1 project MObile Media and ENTertainment Services (MOMENTS) is leveraging the usage of state-of-the-art technique for the handling of vector graphics and animation contents, obtained through very low data transmission channels, in order to provide veru attractive multimedia services in that environment. This paper focuses on the achievements obtained within MOMENTS in regard to the handling of dynamic 2D/3D graphics for the projected wireless multimedia services.
series other
last changed 2003/04/23 15:14

_id 029f
authors Bermudez, Julio and King, Kevin
year 1998
title Media Interaction & Design Process: Establishing a Knowledge Base
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 6-25
doi https://doi.org/10.52842/conf.acadia.1998.006
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. Analog systems of architectural production use tracing paper, vellum, graphite and ink, clipboard, clay, balsa wood, plastic, metal, etc. Analog systems have also been termed ‘handmade’, ‘manual’, ‘material’ or ‘physical’. Digital systems of architectural production use scanning, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc. Digital systems have also been called ‘electronic’, ‘computer-aided’, ‘virtual’, etc. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not been sufficiently codified, cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses this shortcoming by bringing together reported experiences from diverse researchers over the past decade. This summary is informed by more than three years of continuous investigation in the impacts of analog-digital conversations in the design process. The goal is to establish a state-of-the-art common foundation that permits instructors, researchers and practitioners to refer to, utilize, test, criticize and develop. An appendix is included providing support for the paper’s arguments.

series ACADIA
email
last changed 2022/06/07 07:52

_id e513
authors Chaikin, George
year 1998
title The Computer and the Studio
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 51-54
doi https://doi.org/10.52842/conf.ecaade.1998.051
summary The studio is the primary place of architectural education - the place where the warp of representation and the weft of technique are woven together. Architecture is taught as a domain of ideas, ideas about how and why buildings are built, about the dialectic between concept and materiality. To the architectural student, the drawing is the exemplar of the quality of work he or she will expect in the final construction process. As such, it is very important that the student appreciate the "materiality" of the work to be realized, and this is best done through the education of the whole person, of the entire cognitive mechanism, which most certainly includes the hands. We feel strongly that the student must engage in the creative process in a profoundly physical way, must learn the art and joy of making things, and only then can she or he appreciate the representational abstraction offered by the computer.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:55

_id ga9806
id ga9806
authors Colabella, Enrica
year 1998
title Verba, Scripta et alea Generatim
source International Conference on Generative Art
summary We don’t know what Art is. It is certainly a vacuum, but also a space, a moment, a time. Art is the conscience ( and we try with this Conference to increase our level of conscience, in Latin cum scire, to know with ), an ethics conscience, a conscience of liberation . It is not a vacuum, if it is not a representation of our liberation, a liberation by the world, and because we try to do another world. The question is to invent, to learn a tool, the system, the artifice. Art is done also by many artifices . But it is soon clear how much intelligence is behind the artifice and when the artifice is on the contrary learnt by ear. I hope that I am inside the people of  "sudate carte" ( sweaty papers ) of Leopardi. This the maxima instance.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9803
id ga9803
authors Dehlinger, Hans E.
year 1998
title The Artist´s Intentions and Genetic Coding in Algorithmically Generated Drawings
source International Conference on Generative Art
summary Art-work, based on line drawings, is challenging for a number of reasons. It is a very much reduced art form relying on and exploiting the calligraphic qualities of lines only. It is more related to writing than to painting and it has a transient element in it, which is attributed to the movements of the pen equipped hand. With the aid of computer programs line drawings can be produced, exhibiting very specific qualities. In asking what a single line is composed of, we may draw analogies to genetic coding and generate variations within a population of lines belonging to the same family. An artist can cast his intentions into the definition of such a genetic code and the drawings produced accordingly will populate a specific domain of the universe of machine generated drawings.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c3e0
authors Dorsey, J. and McMillan, L.
year 1998
title Computer Graphics and Architecture: State of the Art and Outlook for the Future
source Computer Graphics, Vol 32, No 1, Feb 1998. pp. 45-48
summary During the three decades since Ivan Sutherland introduced the Sketchpad system, there has been an outpouring of computer graphics systems for use in architecture. In response to this development, most of the major architectural firms around the world have embraced the idea that computer literacy is mandatory for success. We would argue, however, that most of these recent developments have failed to tap the potential of the computer as a design tool. Instead, computers have been relegated largely to the status of drafting instruments, so that the "D" in CAD stands for drafting rather than design. It is important that future architectural design systems consider design as a continuous process rather than an eventual outcome.The advent of computer graphics technology has had an impact on the architectural profession. Computer graphics has revolutionized the drafting process, enabling the rapid entry and modification of designs. In addition, modeling and rendering systems have proven to be invaluable aids in the visualization process, allowing designers to walk through their designs with photorealistic imagery. Computer graphics systems have also demonstrated utility for capturing engineering information, greatly simplifying the analysis and construction of proposed designs. However, it is important to consider that all of these tasks occur near the conclusion of a larger design process. In fact, most of the artistic and intellectual challenges of an architectural design have already been resolved by the time the designer sits down in front of a computer. In seeking insight into the design process, it is generally of little use to revisit the various computer archives and backups. Instead, it is best to explore the reams of sketches and crude balsa models that fill the trash cans of any architectural studio.In architecture, as in most other fields, the initial success of computerization has been in areas where it frees humans from tedious and mundane tasks. This includes the redrawing of floor plans after minor modifications, the generation of largely redundant, yet subtly different engineering drawings and the generation of perspective renderings.We believe that there is a largely untapped potential for computer graphics as a tool in the earlier phases of the design process. In this essay, we argue that computer graphics might play a larger role via applications that aid and amplify the creative process.
series journal paper
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_804460 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002