CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 547

_id 34
authors Regot, Joaquin and De Mesa, Andres
year 1998
title Modelado de Superficies Complejas. La Casa Mila de Antonio Gaudi (Modeling of Complex Surfaces. The House Mila of Antonio Gaudi)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 258-265
summary This paper explains the three-dimensional representation procedure of one fragment of Mil· house elevation designed by the architect Antoni GaudĚ. The generation process of an architectonic virtual model constituted by free form surfaces like this, represents a paradigm of high level difficulty in CAD modeling. The main objective of our research has been not only construct a model that shows the complex form of its architecture, but also verify the performance of the different tools supported by computer aided design programs in the management of surface modeling.We obtained an accurate information of the real surface elevation with a photogrammetric survey using contour lines. The transformation of this kind of data in a three-dimensional model was not immediately Thus, we have had study different ways to generate the three-dimensional model solution. The process began with the construction of different surface models supported by analytic functions, but the obtained surfaces made with this system were deficient and not too much satisfactory. That's why, we use a polyhedron mesh surface method in order to improve these results.in spite of this methodology reductive performance, (compared with analytic function systems), the obtained surface demonstrated that this technique was the best way to satisfy the requirement of a free form surface previously established as we want to construct. From this point the principal problem was generate a surface defined by two-dimensional data, (contour lines), applying an automatic process sufficiently fast to compete with the analytic function systems.To satisfy the demand was necessary make complementary software to improve the process and allow more fluidity to resolve this typology of surfaces. We achieved this phase thanks to Joan Miquel Quilez collaboration and the constant dedication in the elaboration of complementary software to computer aided design. Finally, the introduction of render systems with lights, shadows, textures and reflected images, allowed show the studied elevation area of Mil· house with more accuracy. Thus, the limits and contours of the finally surface were more evident and help us to known the properties of a non- materialized free form surface successfully.
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id cb96
authors Buckley, E., Zarli, A., Reynolds, C. and Richaud, O.
year 1998
title Business objects in construct IT
source R. Amor (ed.) Product and Process Modelling in the Building Industry, Building Research Establishment, Watford, England, pp. 117-130
summary Objective: EU Esprit Project 25.741 Wonda aims to meet the needs for Enterprise Information Systems and E-Commerce in the construction and banking industries. Wonda aims to deliver a solution suitable for contracting firms. The solution should enable take-up by SMEs, incremental value-added growth (perhaps Incremental Radicalism), mobile computing for location independent access by project managers and quick set-up of virtual enterprises reflecting both the short customer-supplier relationships in the industry and the need of construction firms to constantly re-configure and re-invent themselves. Method: Wonda will develop an open and secure framework for business objects and electronic payment. Business objects can be defined as software components, which encapsulate business rules and procedures and which can run anywhere on the network. They provide secure and sophisticated access to diverse electronic content and software applications. Indeed, just as a building can be described as a unique arrangement of standard products, a building project can be described as a unique arrangement of standard product data. Business Objects give a high level view of product data. They can be assembled into frameworks to support high-level views on industrial projects. The open framework will enable a distributed architecture through CORBA thus facilitating the interoperation of heterogeneous software components as found in legacy systems. The modular security of the framework and its support for electronic payment ensure authenication, confidentiality and non-repudiation as required for the business processes of construction virtual enterprises. Indeed the modular and incremental implemenation of security will be achieved partly through a Business Object architecture. Results will comprise o a pilot in 2 product cycles, o an open & secure framework architecture, o Commotion middleware for enabling business objects on top of Corba, o WeBuild (construction), WeBank (banking) and SILK (security) business objects o OpenDMX component to enable object orientated access to legacy databases.
series other
last changed 2003/04/23 15:14

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id ae1b
authors Zarnowiecka, Jadwiga C.
year 1998
title Chaos, Databases and Fractal Dimension of Regional Architecture
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 267-270
doi https://doi.org/10.52842/conf.ecaade.1998.267
summary Modern research on chaos started in the 60's from an incredible finding that simple mathematical equations can model systems as complicated as waterfalls. In the 70's some scientists in the USA and in Europe started to find their way through the chaos. They were dealing with different spheres of science: mathematics, physics, biology, chemistry, physiology, ecology, economy. In the next 10 years? time the term 'chaos' has become generally known in science. Scientists gather in research groups according to their interests as to chaos and secondly according to their scientific specialities. (Gleick 1996) Objects that described chaos were irregular in shape, ripped. In 1975 Benoit Mandelbrot called them fractals. Fractal dimension that described fractal objects was also his invention. Fractal dimension is a way to measure quality: the degree of harshness, uneveness, irregularity of a given object. Carl Bovill (1996) showed how one can use fractal geometry in architecture and designing. This very fact made me try to use fractal geometry to deal with regional architecture. What or who is the degree of regionality of a given object to be for? A specially qualified person is able to state it nearly automatically. However, regionality is in some sense an unmeasurable feature. While dealing with data basis or checking particular projects, creation of procedures of automatic acquiring information concerning regionality is becoming a necessity.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/20zarnowiecka/index.htm
last changed 2022/06/07 07:57

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id c11a
authors Campbell, D.A.
year 1998
title VRML In Architectural Construction Documents: A Case Study
source VRML 98 Monterey - Proceedings of the 1998 VRML Conference, pp. 115-120
summary The Virtual Reality Modeling Language (VRML) and the World Wide Web (WWW) offer new opportunities to communicate an architect's design intent throughout the design process. We have investigated the use of VRML in the production and communication of construction documents, the final phase of architectural building design. A prototype, experimental Web site was set up and used to disseminate design data as VRML models and HTML text to the design client, contractor, and fabricators. In this paper, we discuss the way our construction documents were developed in VRML, the issues we faced implementing it, and critical feedback from the users of the Web space/site. Finally, we suggest ways to enhance the VRML specification which would enable its widespread use as a communication tool in the design and construction industries. CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Curve, surface, solid, and object representations; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Virtual Reality; J-6. [Computer Applications]: Computer-aided Engineering - Computer-aided design (CAD), Computer-aided manufacturing (CAM). Additional Keywords: architecture, construction, AEC, design, construction documentation, specifications, Internet, extranet, World Wide Web, VRML, virtual worlds, virtual environments
series other
email
last changed 2003/04/23 15:50

_id f323
authors Cha, Myung Yeol
year 1998
title Architectural shape pattern representation and its applications for design computation
source University of Sydney
keywords Data Processing; Computer-Aided Design; Pattern Perception
series thesis:PhD
last changed 2003/02/12 22:37

_id 624d
authors Coors, V. and Wiedmann, B.
year 1998
title Using Wearable GIS in outdoor applications
source Proceedings of the Symposium on Interactive Applications for Mobile Computing, IMC’98, Rostock, Germany, November 1998
summary Geographic Information Systems (GIS) are tools for acquiring, managing, analyzing, and presenting spatially related information. GIS represent parts of our world by digital maps or images. They facilitate the access to multimedial data using criteria such as geographic location or spatial proximity. Today, GIS are being used in all areas where spatial data need to be managed and analyzed. Three major application areas of GIS technology are - public administration, where GIS are used to generate and update spatially related data, - planning, where GIS support spatial decisions, e. g. in urban and regional planning, - research, where GIS help to analyze and describe spatial processes, e.g. in electoral research and environmental management.
series other
last changed 2003/04/23 15:50

_id 1d83
authors Dodge, M., Doyle, S. and Smith, A.
year 1998
title Visual Communication in Urban Planning and Urban Design
source Working Paper 2; Centre for Advanced Spatial Analysis Working Papers; London; June 1998
summary This Case Study documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web (WWW). First, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. The use of Virtual Worlds and their role in visualising urban form within multi-user environments is reviewed. The use of Virtual Worlds is developed into a study of the possibilities and limitations of Virtual Internet Design Arena's (ViDA's), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDA's is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan. Secondly, the role of photorealistic media in the process of communicating plans is examined. The process of creating photorealistic media is documented, and examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is that, although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling in the creation of Augmented Reality is reviewed. Augmented Reality is seen to provide an important step forward in the ability quickly and easily to visualise urban planning and urban design information. Third, the role of visual communication of planning data through GIS is examined in terms of desktop, three dimensional, and Internet based GIS. The evolution to Internet GIS is seen as a critical component in the development of virtual cities that will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality. Finally, a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design.
series other
last changed 2003/04/23 15:50

_id 70a1
authors Elsasa, P.A. van and Vergeesta, J.S.M.
year 1998
title Displacement feature modelling for conceptual design
source Computer-Aided Design, Vol. 30 (1) (1998) pp. 19-27
summary Although the support of surface features, where a surface feature represents a local geometric detail imposed on a surface, is well-defined on prismatic objects, this is notthe case for sculptured surface models. Current methods often lead to data-explosion, high polynomial results, or procedural solutions. In this paper a method isdescribed that allows explicit modelling of protrusions and depressions in free-form B-spline surfaces. As this functionality is intended to be used by industrial designersduring conceptual design, distinct requirements are formulated to allow its use in this early stage of design. A method is described that calculates a blending geometryapproximating G1 cross-boundary smoothness effectively. Using these requirements and approximations, protrusions and depressions can be modelled with real-timeresponse, and with unprecedented flexibility.
keywords Surface Features, Conceptual Design, Curvature Continuity Approximating, B-Spline Patches
series journal paper
last changed 2003/05/15 21:33

_id b0d2
authors Greenberg, S. and Roseman, M.
year 1998
title Groupware Toolkits for Synchronous Work
source Beaudouin-Lafon, M. (ed.) Computer - Supported Cooperative Work, Trends in Software Series, John Wiley
summary Groupware toolkits let developers build applications for synchronous and distributed computer-based conferencing. This chapter describes four components that we believe toolkits must provide. A run-time architecture automatically manages the creation, interconnection, and communications of both centralized and distributed processes that comprise conference sessions. A set of groupware programming abstractions allows developers to control the behaviour of distributed processes, to take action on state changes, and to share relevant data. Groupware widgets let interface features of value to conference participants be added easily to groupware applications. Session managers let people create and manage their meetings and are built by developers to accommodate the group's working style. We illustrate the many ways these components can be designed by drawing on our own experiences with GroupKit, and by reviewing approaches taken by other toolkit developers.
series other
last changed 2003/04/23 15:50

_id acadia21_454
id acadia21_454
authors Kaiser, Kimball; Aljomairi, Maryam
year 2021
title DTS Printer: Spatial Inkjet Printing
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 454-459.
doi https://doi.org/10.52842/conf.acadia.2021.454
summary Inkjet printing has become abundantly available to businesses, offi ces, and households ever since its commercialization in the late 1980s. Although roughly forty years have passed, the desktop printer is still limited to printing on thin fl at surfaces, mainly paper (Mills 1998). On the other hand, while larger fl atbed printing technology does offer printing on a wide-range of substrates of various thicknesses, it is limited to 2-axis printing and is mainly used for large scale commercial applications due to high machine costs.

Motivated by the ambition of printing on irregular surfaces of varied mediums, improving upon high price points of existing fl at-bed printing machines, and contributing to the public knowledge of distributed manufacturing, the Direct-To-Substrate (DTS) printer is an exploration into an integrated z-axis within inkjet printing. To realign a familiar technology used by many and hack it for the purposes of expanded capabilities, the DTS allows a user to manufacture a three-dimensional artifact and later print graphics directly upon said geometry using the same machine. To remain as accessible as possible, the DTS printer is a computer-numerically-controlled desktop machine made from common, sourceable hardware parts with a tool-changeable end effector, that currently accepts a Dremel tool as a router, and a hacked inkjet cartridge

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia03_047
id acadia03_047
authors Martens, B., Brown, A. and Turk, Z.
year 2003
title Automated Classification of CAAD-related Publications: Conditions for Setting-Up a Keywording System
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 365-371
doi https://doi.org/10.52842/conf.acadia.2003.365
summary This paper deals with the CUMINCAD-repository (Cumulative Index on CAD), which was set up in 1998 and has served the CAAD-community since then as an important source of archived domain related information. CUMINCAD contains over 5,000 entries in the form of publications in the field of Computer Aided Architectural Design. The number has been growing steadily over the years. To date only advanced search mechanisms have been provided to access these works. This may work out well for a just-in-time location of a reference, but is inadequate for just in case browsing through the history of CAAD. For such applications, a hierarchical browsing interface, like one in Yahoo or DMOZ.org is envisioned. This paper describes how the keyword categories were defined and how a moderate, distributed effort in defining the categories will allow machine-identified classification of the entire data set. The aim of the paper is to contribute to building up a wide spread consensus on what the appropriate keyword categories in CAAD are, and what sub-topics should sit below the main keyword categories.
keywords Web-based Bibliographic Database; Searchable Index; CAAD Research; Classification
series ACADIA
email
last changed 2022/06/07 07:59

_id 446f
authors Mcintyre, B. and Feiner, S.
year 1998
title A Distributed 3D Graphics Library
source SIGGRAPH 98 Conference Proceedings, Computer Graphics Proceedings, Annual Conference Series, 1998, ACM SIGGRAPH
summary We present Repo-3D, a general-purpose, object-oriented library for developing distributed, interactive 3D graphics applications across a range of heterogeneous workstations. Repo-3D is designed to make it easy for programmers to rapidly build prototypes using a familiar multi-threaded, object-oriented programming paradigm. All data sharing of both graphical and non-graphical data is done via general-purpose remote and replicated objects, presenting the illusion of a single distributed shared memory. Graphical objects are directly distributed, circumventing the "duplicate database" problem and allowing programmers to focus on the application details. Repo-3D is embedded in Repo, an interpreted, lexically-scoped, distributed programming language, allowing entire applications to be rapidly prototyped. We discuss Repo-3D's design, and introduce the notion of local variations to the graphical objects, which allow local changes to be applied to shared graphical structures. Local variations are needed to support transient local changes, such as highlighting, and responsive local editing operations. Finally, we discuss how our approach could be applied using other programming languages, such as Java.
series other
last changed 2003/04/23 15:50

_id 220b
authors Potier, S., Malret, J.-L-. and Zoller, J.
year 1998
title Computer Graphics: Assistance for Archaeological Hypotheses
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 366-383
doi https://doi.org/10.52842/conf.acadia.1998.366
summary This paper is a contribution to the domain of computer tools for architectural and archeological restitution of ancient buildings. We describe an application of these tools to the modeling of the 14th century AD. Thermae of Constantin in Arles, south of France. It was a diploma project in School of Architecture of MarseilleLuminy, and took place in a context defined in the European ARELATE project. The general objective of this project is to emphasize the archeological and architectural heritage of the city of Arles; it aims, in particular, to equip the museum of ancient Arles with a computer tool enabling the storage and consultation of archaeological archives, the communication of information and exchange by specialized networks, and the creation of a virtual museum allowing a redescription of the monuments and a “virtual” visit of ancient Arles. Our approach involves a multidisciplinary approach, calling on architecture, archeology and computer science. The archeologist’s work is to collect information and interpret it; this is the starting point of the architect’s work who, using these elements, suggests an architectural reconstruction. This synthesis contains the functioning analysis of the structure and building. The potential provided by the computer as a tool (in this case, the POV-Ray software) with access to several three-dimensional visualizations, according to hypotheses formulated by the architect and archaeologists, necessitates the use of evolutive models which, thanks to the parametrization of dimensions of a building and its elements, can be adapted to all the changes desired by the architect. The specific contribution of POV-Ray in architectural reconstruction of thermae finds its expression in four forms of this modeling program, which correspond to the objectives set by the architect in agreement with archeologists: (a) The parametrization of dimensions, which contributes significantly in simplifying the reintervention process of the architectural data base; (b) Hierarchy and links between variables, allowing “grouped” modifications of modelized elements in order to preserve the consistency of the architectural building’s morphology; (c) The levels of modeling (with or without facing, for example), which admit of the exploration of all structural and architectural trails (relationship form/ function); and, (d) The “model-type,” facilitating the setting up of hypotheses by simple scaling and transformation of these models (e.g., roofing models) on an already modelled structure. The methodological validation of this modeling software’s particular use in architectural formulation of hypotheses shows that the software is the principal graphical medium of discussion between architect and archaeologist, thus confirming the hypotheses formulated at the beginning of this project.

series ACADIA
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddss9849
id ddss9849
authors Sariyildiz, S. Ciftcioglu, Ö. and Veer, Peter van der
year 1998
title Information Ordering for decision support in building design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary A systematic approach for the application of AI-based information processing for information ordering in architectural building design is described. For this purpose fuzzy associative memory (FAM) method is considered. In this system FAM is used for knowledge representation in building design concerning the functional & technical requirements information and its graded relevance to individuals concerned in the same context. A set of FAM rules having been established as a knowledge base for use, a pattern of information in the form of a fuzzy vector is fed to each FAM rule. Here, a decision support system is aimed to convey the information to the respective individuals and/or bodies involved, in a graded form, according to their capacity of involvement in the building design. By exploiting the binary logic, each FAM rule is fired in parallel but to a different degree so that each rule generates an m-dimensional output fuzzy vector Pi. The union of these vectors creates m-dimensional fuzzy decision vector D that provides the ordered information addressed to respective individuals and/or bodies mentioned. Using simulated data, a verification procedure for the performance of the approach is investigated and by means of the work, the role that artificial intelligence in architecture and building design might play, is pointed out.
series DDSS
last changed 2003/08/07 16:36

_id 2623
authors Sheth, A. and Klas, W.
year 1998
title Multimedia Data Management
source New York: McGraw-Hill
summary Here is the authoritative handbook on multimedia metadata and data management. In one volume, it gathers a wealth of information from the field's leading international experts in this emerging specialty. Multimedia data-text, image, voice, and video-poses unique challenges to product developers and database professionals in midsized to giant organizations. They need to know how multimedia can be effectively stored, accessed, and integrated into applications. The key is "metadata," which acts as an umbrella for multimedia data and allows it to be modeled and managed. In this invaluable guide, well-known contributors from the U.S., Japan, and Europe examine the metadata concept, present relevant standards, and discuss its global use in video databases, speech documents, satellite and medical imaging, and other applications.
series other
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_670713 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002