CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 548

_id 602d
authors Oxman, R., Shaphir, O. and Yukla, M.
year 1998
title Beyond Sketching : Visual Reasoning Through Re-Representation in Cognitive Design Media
doi https://doi.org/10.52842/conf.caadria.1998.337
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 337-346
summary Our research approach which is termed Cognitive Design Media (CDM) demonstrates how the cognitive phenomena of design can be supported in computerized environments. Our current work on the ‘sketch’ project is introduced presented and illustrated. Sketching in design is considered to be one of the significant cognitive phenomena which supports exploration through re-representation in design. Until now, only the medium of hand drawing and sketching has been considered to support these processes. Rather than automating the traditional hand-made sketch, or interpreting sketches in a computer system, we are attempting to employ the computer to support one of the cognitive mechanism of re-representation which underlie the sketch activity.
keywords esign Creativity, Exploration, Design Cognition, Sketch Design, Re-Representation, Cognitive Design Media
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 08:00

_id e72f
authors Dorta, Tomás and LaLande, Philippe
year 1998
title The Impact of Virtual Reality on the Design Process
doi https://doi.org/10.52842/conf.acadia.1998.138
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 138-163
summary Sketching, either hand or computer generated, along with other traditional visualization tools such as perspective drawing have difficulty in correctly representing three dimensional objects. Even physical models, in architecture, suffer in this regard because of inevitable scaling. The designer finds himself cut off from the reality of the object and is prone to misinterpretations of the object and its surrounding space and to resulting design errors. These are sometimes not perceived until too late, once the object has been constructed. Traditional tools use 2D media to represent 3D objects and only manage to introduce the third dimension in a limited manner (perspectives, not only tedious to construct, are static). This scenario affects the design process, particularly the cycle of proposal, verification and correction of design hypotheses as well as the cognitive aspects that condition the designer’s visualization of the designed object. In most cases, computer graphics mimic, through its interface, the traditional way of doing things. The architectural model is parametricized with little regard for visualization. No allowance is made for the change in the medium of graphic representation. Moreover, effort is not made to capitalize on the advantages of numerical calculation to propose new interfaces and new dimensions in object visualization. Virtual Reality (VR), seen not only as technology but as experience, brings the 3D object, abstractly viewed by traditional means, into clearer focus and provides us with these new dimensions. Errors due to abstracted representation are reduced since the interface is always three dimensional and the interactions intuitively made in real time thus allowing the designer to experience the presence of the designed object very quickly. At the École de design industriel of the Faculté d’aménagement, we have run tests using non-immersive VR–one passive (comprehension) and another active (design). This project, involving a group of 72 students during a period of six weeks (6h/week), aimed at analyzing the impact of VR as a visualization tool on the design process versus traditional tools. The results, described in this presentation, shed light on the effect of VR on the creative process as such, as well as on the quality of the results produced by that process.

series ACADIA
email
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
doi https://doi.org/10.52842/conf.ecaade.2001.192
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 0f4c
authors Asanowicz, Aleksander
year 1998
title From Real to Cyber Reality
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 11-19
summary Human activity takes place in two planes, at two levels. Practical activity is present in one of the planes, the other level is occupied by purely cognitive activity. When observing sufficiently long sequences of practical and cognitive activities, one notices transitions between them, which prove true the suspicions of their functional relationship. Because on both of these planes of human activity there is always one and the same element present - an informative element - which on the first plane functions as subordinate, and in the other as an independent one, one can search for a common characteristic for both planes. Such common characteristic for both levels of human activity can be perceived in the fact that in both situations the activity of a human is based on CREATION. Human thinking is based on transitions between what is accessible through experience and what is referred to conceptually. The human thought exists only and exclusively in the vertical motion: from the phenomenal level to the structural level direction of abstraction) and from the conceptual level to the empirical level direction of concretisation). All human activity is multilayered or, more precisely, it is an activity within many layers: the sensual one as well as the structural one. The appearance of conceptual thinking has created a qualitatively new type of a situation. This novelty can be easily seen both in the sphere of the practical cognitive activity as well as in the sphere of the pure cognitive activity. In both cases, the cognitive activity of a human is of a "double-decker" character: image and concept. It is necessary to note here that the "image" does not only mean structural, concrete, but also one which is purely visual, abstract, of no physical form. Therefore, the human experience, being the result of the cognitive activity, is being expressed, becoming objective, materialising in two different but compatible ways. Firstly, in the material structures of practical significance - this way the material culture is created. Secondly - in material structures which have no practical meaning but are solely used for expressing the spiritual contents - thus creating the spiritual culture. Humans have developed an extraordinarily strong need for spiritual activity, which is manifested by the material activity, redundant from the point of view of the material needs.
series plCAD
email
last changed 2003/05/17 10:01

_id 1d83
authors Dodge, M., Doyle, S. and Smith, A.
year 1998
title Visual Communication in Urban Planning and Urban Design
source Working Paper 2; Centre for Advanced Spatial Analysis Working Papers; London; June 1998
summary This Case Study documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web (WWW). First, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. The use of Virtual Worlds and their role in visualising urban form within multi-user environments is reviewed. The use of Virtual Worlds is developed into a study of the possibilities and limitations of Virtual Internet Design Arena's (ViDA's), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDA's is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan. Secondly, the role of photorealistic media in the process of communicating plans is examined. The process of creating photorealistic media is documented, and examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is that, although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling in the creation of Augmented Reality is reviewed. Augmented Reality is seen to provide an important step forward in the ability quickly and easily to visualise urban planning and urban design information. Third, the role of visual communication of planning data through GIS is examined in terms of desktop, three dimensional, and Internet based GIS. The evolution to Internet GIS is seen as a critical component in the development of virtual cities that will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality. Finally, a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design.
series other
last changed 2003/04/23 15:50

_id 50a1
authors Hoffman, Donald
year 1998
title Visual Intelligence
source Norton Publishing, New York
summary After his stroke, Mr. P still had outstanding memory and intelligence. He could still read and talk, and mixed well with the other patients on his ward. His vision was in most respects normal---with one notable exception: He couldn't recognize the faces of people or animals. As he put it himself, "I can see the eyes, nose, and mouth quite clearly, but they just don't add up. They all seem chalked in, like on a blackboard ... I have to tell by the clothes or by the voice whether it is a man or a woman ...The hair may help a lot, or if there is a mustache ... ." Even his own face, seen in a mirror, looked to him strange and unfamiliar. Mr. P had lost a critical aspect of his visual intelligence. We have long known about IQ and rational intelligence. And, due in part to recent advances in neuroscience and psychology, we have begun to appreciate the importance of emotional intelligence. But we are largely ignorant that there is even such a thing as visual intelligence---that is, until it is severely impaired, as in the case of Mr. P, by a stroke or other insult to visual cortex. The culprit in our ignorance is visual intelligence itself. Vision is normally so swift and sure, so dependable and informative, and apparently so effortless that we naturally assume that it is, indeed, effortless. But the swift ease of vision, like the graceful ease of an Olympic ice skater, is deceptive. Behind the graceful ease of the skater are years of rigorous training, and behind the swift ease of vision is an intelligence so great that it occupies nearly half of the brain's cortex. Our visual intelligence richly interacts with, and in many cases precedes and drives, our rational and emotional intelligence. To understand visual intelligence is to understand, in large part, who we are. It is also to understand much about our highly visual culture in which, as the saying goes, image is everything. Consider, for instance, our entertainment. Visual effects lure us into theaters, and propel films like Star Wars and Jurassic Park to record sales. Music videos usher us before surreal visual worlds, and spawn TV stations like MTV and VH-1. Video games swallow kids (and adults) for hours on end, and swell the bottom lines of companies like Sega and Nintendo. Virtual reality, popularized in movies like Disclosure and Lawnmower Man, can immerse us in visual worlds of unprecedented realism, and promises to transform not only entertainment but also architecture, education, manufacturing, and medicine. As a culture we vote with our time and wallets and, in the case of entertainment, our vote is clear. Just as we enjoy rich literature that stimulates our rational intelligence, or a moving story that engages our emotional intelligence, so we also seek out and enjoy new media that challenge our visual intelligence. Or consider marketing and advertisement, which daily manipulate our buying habits with sophisticated images. Corporations spend millions each year on billboards, packaging, magazine ads, and television commercials. Their images can so powerfully influence our behavior that they sometimes generate controversy---witness the uproar over Joe Camel. If you're out to sell something, understanding visual intelligence is, without question, critical to the design of effective visual marketing. And if you're out to buy something, understanding visual intelligence can help clue you in to what is being done to you as a consumer, and how it's being done. This book is a highly illustrated and accessible introduction to visual intelligence, informed by the latest breakthroughs in vision research. Perhaps the most surprising insight that has emerged from vision research is this: Vision is not merely a matter of passive perception, it is an intelligent process of active construction. What you see is, invariably, what your visual intelligence constructs. Just as scientists intelligently construct useful theories based on experimental evidence, so vision intelligently constructs useful visual worlds based on images at the eyes. The main difference is that the constructions of scientists are done consciously, but those of vision are done, for the most part, unconsciously.
series other
last changed 2003/04/23 15:14

_id a545
authors Wood, John B. and Chambers, Tom
year 1998
title Value Added Learning: The Cadet Experience
doi https://doi.org/10.52842/conf.ecaade.1998.165
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 165-172
summary This paper reports on the integration of Information Technology in the Building Design Engineering Studio. It is based on the work carried out by the CADET Unit (CAD Education and Training), which promotes a better understanding of the built environment through an integrated approach to design studio teaching. This is achieved through a dynamic studio environment guided by a Building Design Engineering ethos that adopts a holistic approach to design; recognising that design in engineering, architecture and the visual arts demands an understanding of the challenges of a multidisciplinary approach that acknowledges a broader cultural dimension. There are increasing demands placed on students of architecture and engineering. They require skills in making physical as well as computer models, they must be able to draw in 18th & 19th century conventional media (paper, pen and pencil) as well as CAD and they must be proficient in rendering in full colour both conventionally and in the electronic media including animations. The creative use of the computer at the point of analysis and conceptualisation, as important as technical proficiency, is a necessary part of the design process. In recognition of the demands that we currently make of university students we are exploring two critical responses. In the first case we demonstrate an integrated approach to design studio practice, achieving a value added learning experience in the University Sector, and with a view to the longer term we are exploring the application of a similar design approach within the Secondary School Sector in order to raise the awareness of design at an earlier stage.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:57

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9801
id ga9801
authors Soddu, Celestino
year 1998
title Argenia, a Natural Generative Design
source International Conference on Generative Art
summary Leon Battista Alberti defines the Beauty of Architecture "a concert of all the parts together, performed with proportion and logic in something in which it is possible to find again each event, in a modality that will not allow the inserting, extracting out or changing anything without decreasing its Beauty". With generative art we can approach, directly, this complex paradigm of proportions and logic, and we can directly design the Beauty, or better our idea of beauty, before the realization of each single possible artificial event. This is the heart of generative approach. The Generative Art work for the beauty, in the sense of the humanistic approach of Renaissance, because the generative code, which is the project of generative design, is the real structure of the idea. It defines how to concert all the parts and the dynamic relationship among these parts in the evolution of complexity. The generative project defines which is the law of proportion and which logic the dynamic evolution will follow. All the events that this code can generate will be, in humanistic sense, beautiful, or, if we prefer, will belong and represent our Idea of world. And more. The generative art produces events that are unique and complex. The uniqueness and complexity are strongly related one each other. As in Nature, each event is generated through an artificial life, which, as in the natural life, produces uniqueness, identity and complexity during a identifiable time. This complexity is a natural-like complexity. We can recognise, in the artificial ware we produce through this generative approach, the harmony and the beauty of the natural-like complexity that refers to the Humanistic approach of Renaissance: Man, Geometry, and Nature as references for "the harmony which is not thought as an individual caprice but as conscious reasoning." (L.B.Alberti, De re aedificatoria).
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 05d5
authors Corrao, R. and Fulantelli, G.
year 1998
title Cognitive accessibility to information on the Web: insights from a system for teaching and learning Architecture through the Net
source AA VV, Towards an Accesible Web, Proceedings of the IV ERCIM Workshop “User Interfaces for All”, Långholmen-Stockholm
summary The question of accessibility to the Web takes on a special meaning in educational settings where access to information requires cognitive elaboration of the page contents. It is, therefore, a matter of "cognitive access" to the Web. The main efforts of the designers of Web Based Instruction (WBI) environments to encourage cognitive access are usually aimed at the organisation and presentation of Web documents and at specific cues which can improve the user's interaction, orientation and navigation through the pages. However, it is possible to improve this high-level access to the information by supporting study activities through specific "Working tools" which can be implemented in the Web environment. In this paper we report on the design solutions we have adopted to provide cognitive access to a WBI environment for university students studying Architecture and Town Planning. In particular, we introduce "Working tools" that can be used to support flexible and effective study activities. The adopted design solutions provide different classes of users (not only students) with different access facilities. Finally, it should be noted that the methodologies of the design of WBI systems should deal with this kind of high level access and support it through specific solutions at interface and implementation levels.
series other
last changed 2003/04/23 15:50

_id 8b9d
authors Corrao, R. and Fulantelli, G.
year 1998
title Cognitive Accessibility to Information on the Web: Insights from a System for Teaching and Learning Architecture through the Net ShortPapers: Design Methodology for Universal Access
source Proceedings of the 4th ERCIM Workshop on "User Interfaces forAll" 1998 n.14 p.6 ERCIM
summary The question of accessibility to the Web takes on a special meaning in educational settings where access to information requires cognitive elaboration of the page contents. It is, therefore, a matter of "cognitive access" to the Web. The main efforts of the designers of Web Based Instruction (WBI) environments to encourage cognitive access are usually aimed at the organisation and presentation of Web documents and at specific cues which can improve the user's interaction, orientation and navigation through the pages. However, it is possible to improve this high-level access to the information by supporting study activities through specific "Working tools" which can be implemented in the Web environment. In this paper we report on the design solutions we have adopted to provide cognitive access to a WBI environment for university students studying Architecture and Town Planning. In particular, we introduce "Working tools" that can be used to support flexible and effective study activities. The adopted design solutions provide different classes of users (not only students) with different access facilities. Finally, it should be noted that the methodologies of the design of WBI systems should deal with this kind of high level access and support it through specific solutions at interface and implementation levels.
series other
last changed 2002/07/07 16:01

_id cd44
authors Oxman, Rivka
year 1998
title Thought, Representation and Design in the Electronic Design Studio
doi https://doi.org/10.52842/conf.ecaade.1998.123.2
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 123-129
summary The relevance of design thinking and cognition to the development of pedagogical approaches in the architectural electronic design studio is presented and discussed. In this approach we emphasize and demonstrate the role of the acquisition of explicit knowledge in design. The acquisition of knowledge is achieved through the explication of cognitive structures and strategies of design thinking. The explication process is implemented in a computational medium which supports the learning process as well as the potential re-use of the knowledge.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 08:00

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 07c5
authors Burry, Mark
year 1998
title Handcraft and Machine Metaphysics
doi https://doi.org/10.52842/conf.ecaade.1998.041
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 41-50
summary As the cost of 3D digitisers drops and PC price performance rises, opportunities for hand - computer co-operation improve. Architectural form may now be experimentally moulded or carved using manual techniques in close association with the computer. At any stage the model can be mechanically digitised and translated to a computer database for explorations that go beyond simple physical manipulation. In the virtual environment, the resulting forms can be rationalised using an ordering geometry or further de-rationalised. This potential for debasing intuitive, sensually haptic and responsive handwork through its translation into numerically cogent formulations is risky business. But it may also bring new and unlikely rewards. This paper considers the implications and aesthetics of negotiations between handcraft and consecutive or synchronous computer digitalisation of intentions. Two situations will be discussed and compared. The first is the nature of computer modelling and its representation per se, and the second is the relevance of using handcraft as a sponsor for computer-based manipulation and morphological experimenting.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:54

_id 0e29
authors Mahdavi, A.
year 1998
title Computational decision support and the building delivery process: a necessary dialogue
source Automation in Construction 7 (2-3) (1998) pp. 205-211
summary The current critical discourse of computational design support systems (particularly building performance modeling tools) focuses more often than not on the `endogenous' system problems, that is deficiencies in user communication, absence of integration, and the `black-box' character of the underlying computational routines. As a result of this mostly valid criticism, work has been initiated in various quarters to improve modeling-based decision support environments. This paper argues that parallel efforts are needed to address other factors that go beyond the immediate technical realm of tool-making and involve matters pertaining to issues of building design and construction process at large. The building delivery process has traditionally been regarded as a discrete and sequential set of activities. This state of affairs is the result of a historical evolution driven by many factors, one of which might be the necessity to organize the activities for the purpose of establishing a professional fee structure that is commensurate with the scope of work and level of accountability or responsibility. However, within the context of rapidly changing building technologies, production processes, and knowledge transfer mechanisms, the existing procedural framework no longer seems capable of meeting the increasingly complex demands associated with the creation of the built environment. While the technical capabilities of decision support tools are expanding, they still fall short of challenging the very logic of the often nonintegrated processes they are designated to support. It may be understandable that, as compared to tools, processes tend to be more resilient to structural changes because of their inherent communicative nature, evolved over time through general acceptance and consensus. This paper argues, however, that careful study of the necessary conditions under which significant structural changes in the building delivery process would evolve, can effectively inform the developmental strategies in computational design support toward anticipation and encouragement of such changes.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id sigradi2009_1020
id sigradi2009_1020
authors Natividade, Veronica Gomes; Alessandro Ventura
year 2009
title Arquitetura Algorítmica. Uma abordagem conceitual [Algorithmic Architecture: A conceptual approach]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The current paper aims to a conceptual approach to the widespread algorithmic architectures defined for Terzidis Kostas (2006) through the philosophy of complex sciences theorized by Edgar Morin (1998). It intends to discuss two approaches outwardly contradictory emerged from the theme: on one hand, the conception of contemporary architecture is beyond generation of complex shapes into computer software, on the other hand the overvaluation of logics can lead architects to incur in the same mistake of simplification performed by the modernists.
keywords new paradigms; algorithimic architecture; complexity; design process
series SIGRADI
email
last changed 2016/03/10 09:56

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddss9846
id ddss9846
authors Rigatti, Decio
year 1998
title Rubem Berta Housing Estate: Order and Structure, Designand Use
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The main goal of this paper is to investigate, through some space configurational based tools, a quite common phenomenon found in many different locations in Brazil, concerning the process of urban changes individually introduced by dwellers of public housing estates. A significant number of housing estates, particularly those designed according to rationalist concepts, seem to be unable to support space related social requirements and are then widely transformed when compared to the original layouts. Beyond the quantitative features, the morphological changes that take place in those housing estates mean a fundamental new approach to understand how completely new urban structures can arisefrom the space produced by a comprehensive urban design, took as a starting point for the transformations made by the dwellers of those settlements. As a case study is analysed the Rubem Berta Housing Estate which was built in Porto Alegre/RS, Brazil, for 20,000 people in the late 70’s. Since the begining of its occupation in 1986 and the invasion that took place in 1987, the urban transformations there have never stopped. It’s possible to realize that the dwellers individually use some constant physical rules to define the new settlement which are very similar within the estate itself and, at the same time, very similar to those found in other transformed housing estates of this sort. The physical rules introduced change the features of the entire settlement in two different levels: a) locally, through the transformations introduced in order to solve individual needs; b) globally, the local rules of physical transformations produce a new overall structure for the whole urban complex. The knowledge of this process makes it possible to bring to the surface of architectural theory some generic configurational codes that can be used as a tool for designing public housing estates in Brazil.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_820935 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002