CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id 2ca1
authors Montagu, A. and Bermudez, J.
year 1998
title Datarq: The Development of a Website of Modern Contemporary Architecture
doi https://doi.org/10.52842/conf.ecaade.1998.x.p7a
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998
summary The pedagogic approach in the architectural field is suffering a deep change taking in consideration the impact that has been produced mainly by the CAD and multimedia procedures. An additional view to be taken in consideration is the challenge produced by the influence of advanced IT which since 1990-92, has affected positively the exchange of information among people of the academic environment. Several studies confirm this hypothesis, from the wide cultural spectrum when the digitalization process was emerging as an alternative way to data processing (Bateson 1976) to the pedagogical-computational side analyzed by (Papert 1996). One of the main characteristics indicated by S. Papert (op.cit) is the idea of "self teaching" which students are used everywhere due to the constant augment of "friendly" software and the decreasing costs of hardware. Another consequences to point out by S. Paper (op.cit) is that will be more probably that students at home will have more actualized equipment that most of the computer lab. of schools in general. Therefore, the main hypothesis of this paper is, "if we are able to combine usual tutorials design methods with the concept of "self-teaching" regarding the paradigmatic architectural models that are used in practically all the schools of architecture (Le Corbusier, F.L.Wright, M.v. der Rohe, M.Botta, T.Ando, etc.) using a Web site available to everybody, what we are doing is expanding the existing knowledge in the libraries and fulfill the future requirements of the newly generations of students".
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/35montagu/index.htm
last changed 2022/06/07 07:50

_id ebb2
authors Proctor, George
year 2000
title Reflections on the VDS, Pedagogy, Methods
doi https://doi.org/10.52842/conf.acadia.2000.015.2
source ACADIA Quarterly, vol. 19, no. 1, pp. 15-16
summary After having conducted a Digital Media based design studio at Cal Poly for six years, we have developed a body of experience I feel is worth sharing. When the idea of conducting a studio with the exclusive use of digital tools was implemented at our college, it was still somewhat novel, and only 2 short years after the first VDS- Virtual Design Studio (UBC, UHK et.al.-1993). When we began, most of what we explored required a suspension of disbelief on the part of both the students and faculty reviewers of studio work. In a few short years the notions we examined have become ubiquitous in academic architectural discourse and are expanding into common use in practice. (For background, the digital media component of our curriculum owes much to my time at Harvard GSD [MAUD 1989-91] and the texts of: McCullough/Mitchell 1990, 1994; McCullough 1998; Mitchell 1990,1992,1996; Tufte 1990; Turkel 1995; and Wojtowicz 1993; and others.)
series ACADIA
email
last changed 2022/06/07 08:00

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
doi https://doi.org/10.52842/conf.ecaade.2001.192
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 7560
authors Gomez, Nestor
year 1998
title Conceptual Structural Design Through Knowledge Hierarchies
source Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh
summary Computer support for conceptual design still lags behind software available for analysis and detailed design. The Software Environment to Support the Early Phases in Building Design (SEED) project has the goal of providing design generation and exploration capabilities to aid in the conceptual design of buildings, from architectural programming and layout to enclosure design and structural configuration. The current work presents a component of the efforts of the SEED-Config Structure group in providing computer support for conceptual structural design. The Building Entity and Technology (BENT) approach models data about building elements in a general, hierarchical form, where design evolution is represented by the growing specificity of the design description. Two methods of system-supported design generation are provided: case-based reasoning and application of knowledge rules. The knowledge rules, termed technologies, and how they are specified and used are the primary focus of this thesis. In the BENT approach, conceptual structural engineering knowledge is modularized into technology nodes arranged in a directed 'AND/OR' graph, where OR nodes represent alternative design decisions and AND nodes represent problem decomposition. In addition, nodes in the graph may also be specified as having AND/OR incoming arcs thus reducing the duplication of nodes and enhancing the representational power of the approach. In order to facilitate the incorporation of new knowledge into the system, and verify and/or change the knowledge already in the system, the data model and the interface allow for dynamic creation, browsing, and editing of technology nodes. Design generation through the use of the knowledge hierarchy involves the conditional application of nodes according to the design context as represented by the building element(s) under consideration. Each application of a technology node expands the design of building elements by increasing the detail of the design description or by decomposing the elements into less abstract components. In addition, support for simultaneous design of multiple elements and for iteration control are also provided. An important feature of the BENT approach is that the generative knowledge (i.e., the technology hierarchy) is detached from the information repository (i.e., the database of entities which make up the building). This allows the technology hierarchies to be used in a modular fashion from building problem to building problem.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 6433
authors Agranovich-Ponomarieva, E. and Litvinova, A.
year 1998
title The "Real Space - Cyberspace" Paradigm
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 141-145
summary In a chain of "real - perceived - imagined space" the computer reduces to a uniform model of only real and imagined space. It cannot undertake man's function or it cannot build the perception model. However, perception assumes physiological perception, psychological estimation and understanding, and emotional ho-experience. For a person the seizing of space during perception is constructing temporary spatial images and their development. The communicative relations of the person with environment are established during revealing internal and external structural communications and the interior represents the message, unwrapped in space and perceived in time. The real space is formed under influence of the sum of conceptual restrictions. The character of these restrictions depends on a super idea, a type of an initial situation, character of installations and on social-cultural stereotypes of the author. Without this stage transition to real architectural object is impossible. Result of activity of an architect at this stage becomes creation hypothetical cyberspace, with its own peculiarities and laws.
series plCAD
last changed 1999/04/08 17:16

_id ascaad2006_paper19
id ascaad2006_paper19
authors Arjun, G. and J. Plume
year 2006
title Collaborative Architectural Design as a reflective Conversation: an agent facilitated system to support collaborative conceptual design
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In this paper, definitions of collaborative design are discussed and understood in terms of a designer’s cognitive collaborations to explore his/her experiential memory for remote idea associations. Based on Schon’s reflective practice theory, Valkenburg and Dorst’s (1998) description of collaborative team designing is adopted as a model for a proposed design conversation system. The design conversation system is aimed at triggering the experiential memory of the designer by associating significant ideas from different design domains to provide different perspectives of a design situation. The paper describes a proposed framework for the design conversation system incorporating computational agents in a blackboard architecture environment.
series ASCAAD
email
last changed 2007/04/08 19:47

_id ddss9809
id ddss9809
authors Brondino, Nair Cristina Margarido and Da Silva, Antônio Nélson Rodrigues
year 1998
title A comparison of land valuation methods supported by GIS
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The purpose of this work was to study three different strategies for the appraisal of urban land. The first, a theoretical strategy created by the authors of this study to reproduce the common conditions of Brazilian cities, uses increments and reductions in the value of a square meter of land according to each lot’s individual features. The second method, based on Multiple Regression techniques, is widely used for valuation purposes. Finally, the effectiveness of Artificial Neural Networks to deal with thiskind of problem is studied. A sample of 157 lots was collected from several neighbourhoods of a small Brazilian city for the case study. The lot features recorded were area, width, shape, distance to the downtown district of the city through the street network, existence of fences and paved sidewalks, and market price. Prediction errors have been estimated for each of the three methods in order to compare their results. Predicted and error values, added to Geographical Information Systems, may be used to build thematic maps and to check how each strategy applies to different areas of the city. The analyses of error values conducted in this study showed that Artificial Neural Networks presented the best performance as a land appraisal method for the case studied.
series DDSS
email
last changed 2003/11/21 15:16

_id cb42
authors Coates, Paul and Schmid, Claudia
year 1999
title Agent Based Modelling
doi https://doi.org/10.52842/conf.ecaade.1999.652
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 652-661
summary This paper describes the work of students in Unit 6 of the Diploma school at the UEL during 1998-9. The unit in association with the MSc has been exploring ways of using the computer to explore the idea of emergent form as a way of generating designs, and a way of focussing the pedagogic process on a new and interesting set of determinants of form.
keywords Agent Based Modelling, Generative Modelling, Emergent Forms
series eCAADe
email
last changed 2022/06/07 07:56

_id 99f2
authors Gero, J.S.
year 1998
title Concept formation in design
source Knowledge-Based Systems 10(7-8): 429-435
summary This paper presents a computationally tractable view on where simple design concepts come from by proposing a paradigm for the formation of design concepts based on the emergence of patterns in the representation of designs. It is suggested that these design patterns form the basis of concepts. These design patterns once learned are then added to the repertoire of known patterns so that they do not need to be learned again. This approach uses the notion called the loosely-wired brain. The paper elaborates this idea primarily through implemented examples drawn from the genetic engineering of evolutionary systems and the qualitative representation of shapes and their multiple representations.
keywords Concept Formation, Pattern Emergence, Representation
series other
email
last changed 2003/04/06 09:00

_id 9bee
authors Gerzso, J. Michael
year 2001
title Automatic Generation of Layouts of an Utzon Housing System via the Internet
doi https://doi.org/10.52842/conf.acadia.2001.202
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 202-211
summary The article describes how architectural layouts can be automatically generated over the Internet. Instead of using a standard web server sending out HTML pages to browser client, the system described here uses an approach that has become common since 1998, known as three tier client/server applications. The server part of the system contains a layout generator using SPR(s), which stands for “Spatial Production Rule System, String Version”, a standard context- free string grammar. Each sentences of this language represents one valid Utzon house layout. Despite the fact that the system represents rules for laying out Utzon houses grammatically, there are important differences between SPR(s) and shape grammars. The layout generator communicates with Autocad clients by means of an application server, which is analogous to a web server. The point of this project is to demonstrate the idea that many hundreds or thousands of clients can request the generation of all of the Utzon layouts simultaneously over the Internet by the SPR(s) server, but the server never has to keep track when each client requested the generation of all of the layouts, or how many layouts each client has received.
keywords Internet, Spatial-Production-Rules Grammars, Utzon
series ACADIA
email
last changed 2022/06/07 07:51

_id ddss9826
id ddss9826
authors Hendricx, A., Geebelen, B., Geeraerts, B. and Neuckermans, H.
year 1998
title A methodological approach to object modelling in the architectural designprocess
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The paper describes a first prototype constructed in search for a central object model. It presents all possible data, concepts and operations concerning the architectural design process in the early phases.A central model of the process of design is essential: going from one design phase into another, the model describes geometrical shapes, abstract concepts like space and activity, concrete physical building elements and the basic operations all these entities undertake. Emphasis is put on combining all these different viewpoints, thus enabling the designer to use a broad range of design strategies. The aim is to help him and not steer or even hamper his creative process. Information necessary toassist the user of the system concerning energy calculation, stability checks etc can be extracted. By means of appropriate interfaces not only those tests built on top of the system but also existing software packages can make use of the model’s object structure. The implemented object model is one of the cornerstones of the IDEA+ project, aiming to provide an Integrated Design Environment for Architecture.
keywords object model, building model, CAAD, IDEA+, MERODE
series DDSS
last changed 2003/08/07 16:36

_id c837
authors Lee, Jia-Her
year 1998
title Modelling Mondrian's Design Processes and Their Architectural Associations Using Multilayer Neural Networks
doi https://doi.org/10.52842/conf.caadria.1998.455
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 455-464
summary Can artificial intelligence be used for design behavior of human beings? Human designer’s behavior and design thinking are extremely complicated. There is still argument about the relationship between the two until now. Therefore, this research only investigates regular and common design behavior. This essay is taking Mondrian of Neo-Plasticism as an example and neural networks systems as a tool to illustrate the core idea. It is hoped that we can simulate the design thinking ability, such as memory association and recognition of human designers. Computation of neural networks systems, as a result and the difference between human designers and computer, can be discussed too. Also, since the work of Neo-Plasticism Mondrian influences contemporary architecture design, industrial design, andvisual design directly or indirectly, floorplans of architect John Hejduk’s works were taken as an example to discuss the application of Neural networkss in the design field.
keywords Neural Networks, Design Processes, Neo-Plasticism, Architectural Floorplans
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:51

_id ddss9836
id ddss9836
authors Lee, Jia-Her and Liu, Yu-Tung
year 1998
title Modelling Mondrians Design Processes and TheirArchitectural Associations Using Multilayer NeuralNetworks
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Can artificial intelligence be used for design behavior of human beings? Human designer’s behavior and design thinking are extremely complicated. There is still argument about the relationship between the two until now. Therefore, this research only investigates regular and common design behavior. This essay is taking Mondrian of Neo-Plasticism as an example and neural networks systems as a tool to illustrate the core idea. It is hoped that we can simulate the design thinking ability, such as memoryassociation and recognition of human designers. Computation of neural networks systems, as a result and the difference between human designers and computer, can be discussed too. Also, since the work of Neo-Plasticism Mondrian influences contemporary architecture design, industrial design, andvisual design directly or indirectly, floorplans of architect John Hejduk’s works were taken as an example to discuss the application of Neural networkss in the design field.
series DDSS
last changed 2003/08/07 16:36

_id 2edf
authors Levy, Pierre
year 1998
title Becoming Virtual, Reality in the Digital Age
source Plenum Trade, New York
summary Pierre Levy takes a fresh look at the whole idea of what is virtual. He's responding to the widespread belief, and sometimes even panic, that a digital society with emphasis on virtual interactions is necessarily depersonalizing. He takes particular exception to the notion that "virtual" and "real" are opposites. Instead, Levy argues that virtuality is one of four modes of existence, the rest of which he describes as reality, possibility, and actuality. Each is defined in terms of its relationship with its environment. In following Levy's world view, you may find that he interprets some or all of those terms in ways you're not used to, but the result is an interesting new approach to what it means to be part of an increasingly digital world. He examines the virtualization of several elements our society: the corporal body, text, the economy, language, technology, contracts, intelligence, subjects, and objects. What he finds is not a destruction of the personal so much as a transformation. Virtualization adds to, but does not replace, the real, the possible, and the actual. By understanding what virtualization means and involves, Levy believes that society will gain a greater variety of options for interaction in all areas. Becoming Virtual is a serious philosophical work, dense with ideas.
series other
last changed 2003/04/23 15:14

_id 2
authors Montagu, Arturo
year 1998
title Desde La Computacion Grafica a los Sistemas CAD Actuales. Una Vision Historica de la Revolucion Producida en los Sistemas de Representacion Grafica (1966-1998) (From Graphical Computation to Present CAD Systems. An Historical Vision of the Revolution Produced in the Systems of Graphical Representation (1966-1998))
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 14-21
summary Throughout these pages are made known the persons, the projects and the books that have influenced my actions and that they will be mentioned in form underlined in this paper. I have to emphasize that since 1965 to 1970, and in the continuous search that I was accomplishing to find data and bibliography adapted to the topic of computer graphics, only two series of publications contained topics related to this matter at that time: one was the IBM Journal and the other series was the communications of the ACM. The purpose of this work is to make known an experience accomplished throughout 30 years of intense activity in finding new methods of drawing and design, based on the use of digital computers, mainly in Argentina, and during certain periods of time in Great Britain and since 1971 during short visits to the United States and also in France. The first idea emerged in the year 1965 when I was assistant teacher at the School of Architecture of the University of Buenos Aires, as a combination of ideas between the concepts of spatial geometry and the current morphological studies that we taught in the Course of professor Gaston Breyer. However the idea of automatic drawing emerged observing the operation of the first scientific digital computer installed in the Computing Institute of the Faculty of Sciences of the University of Buenos Aires in 1963 (Sadosky 1963). At the beginning, the approach to the computer were not accomplished from a strictly scientific point of view, but it was implying a kind of "sincresis" (Koheler 1940) it is more than a synthesis, because I was tried to combine ideas that have had its origin in different worlds of thinking, the analogous world and the digital world, and this situation was very difficult to accept at that time.The designing procedures in the decade 1960's was deeply rooted (and still continues) in the architectural design field as a result of a drawing process based in heuristic techniques.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 6f74
authors Norman, Richard
year 1998
title Teaching Computation for Design
doi https://doi.org/10.52842/conf.ecaade.1998.115
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 115-122
summary Modeling the formal idea has long been problematic in schools. Renaissance tools, however inspired by the invention of perspective, usually result in two-dimensional sketches. Cardboard and small pieces of wood occasionally become the three-dimensional media of first visualization in studios; modeling on the computer is a newer idea. This paper examines two experiments, one where design fundamentals and solid modeling are introduced in a common studio, the other where instruction is removed from the studio environment and made an adjunct elective. In the first case the course is an introduction to both design and computation, an electronic investigation of Paul Klee’s first principles: point, line, shape, form and space—adding, subtracting, rotating and multiplying objects using Beaux Arts principles to create the design. The result is architectural form-making that was not possible in the studio-past. The second case is a course which isolates computer instruction from the studio, making it a separate academic discipline. Fantasy projects then demonstrate computational principle, exploring pure form without burden of technical or social obligation that studio imposes; alternative methods are presented for introducing design computation to the architectural student.  

series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:58

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 62cc
authors Seebohm, T. and Wallace, W.
year 1998
title Rule-based representation of design in architectural practice
source Automation in Construction 8 (1) (1998) pp. 73-85
summary It is suggested that expert systems storing the design knowledge of particular offices in terms of stylistic and construction practice provide a means to take considerably more advantage of information technology than currently. The form of the knowledge stored by such expert systems is a building representation in the form of rules stating how components are placed in three-dimensional space relative to each other. By describing how Frank Lloyd Wright designed his Usonian houses it is demonstrated that the proposed approach is very much in the spirit of distinguished architectural practice. To illustrate this idea, a system for assembling three-dimensional architectural details is presented with particular emphasis on the nature of the rules and the form of the building components created by the rules to assemble typical details. The nature of the rules, which are a three-dimensional adaptation of Stiny's shape grammars, is described. In particular, it is shown how the rules themselves are structured into different classes, what the nature of these classes is and how specific rules can be obtained from more general rules. The rules embody a firm's collective design experience in detailing. As a conclusion, an overview is given of architectural practice using rule-based representations.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id e679
authors Seichter, H., Donath, D. and Petzold, F.
year 2002
title TAP – The Architectural Playground - C++ framework for scalable distributed collaborative architectural virtual environments
doi https://doi.org/10.52842/conf.ecaade.2002.422
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 422-426
summary Architecture is built information (Schmitt, 1999). Architects have the task of restructuring and translating information into buildable designs. The beginning of the design process where the briefing is transformed into an idea is a crucial phase in the design process. It is where the architect makes decisions which influence the rest of the design development process (Vries et al., 1998). It is at this stage where most information is unstructured but has to be integrated into a broad context. This is where TAP is positioned – to support the architect in finding solutions through the creation of spatially structured information sets without impairing thereby the creative development. We want to enrich the inspiration of an architect with a new kind of information design. A further aspect is workflow in a distributed process where the architect’s work becomes one aspect of a decentralised working patterns. The software supports collaborative work with models, sketches and text messages within an uniform surface. The representations of the various media are connected and combined with each other and the user is free to combine them according to his or her needs.
series eCAADe
email
last changed 2022/06/07 07:59

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_953258 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002