CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 554

_id 50a1
authors Hoffman, Donald
year 1998
title Visual Intelligence
source Norton Publishing, New York
summary After his stroke, Mr. P still had outstanding memory and intelligence. He could still read and talk, and mixed well with the other patients on his ward. His vision was in most respects normal---with one notable exception: He couldn't recognize the faces of people or animals. As he put it himself, "I can see the eyes, nose, and mouth quite clearly, but they just don't add up. They all seem chalked in, like on a blackboard ... I have to tell by the clothes or by the voice whether it is a man or a woman ...The hair may help a lot, or if there is a mustache ... ." Even his own face, seen in a mirror, looked to him strange and unfamiliar. Mr. P had lost a critical aspect of his visual intelligence. We have long known about IQ and rational intelligence. And, due in part to recent advances in neuroscience and psychology, we have begun to appreciate the importance of emotional intelligence. But we are largely ignorant that there is even such a thing as visual intelligence---that is, until it is severely impaired, as in the case of Mr. P, by a stroke or other insult to visual cortex. The culprit in our ignorance is visual intelligence itself. Vision is normally so swift and sure, so dependable and informative, and apparently so effortless that we naturally assume that it is, indeed, effortless. But the swift ease of vision, like the graceful ease of an Olympic ice skater, is deceptive. Behind the graceful ease of the skater are years of rigorous training, and behind the swift ease of vision is an intelligence so great that it occupies nearly half of the brain's cortex. Our visual intelligence richly interacts with, and in many cases precedes and drives, our rational and emotional intelligence. To understand visual intelligence is to understand, in large part, who we are. It is also to understand much about our highly visual culture in which, as the saying goes, image is everything. Consider, for instance, our entertainment. Visual effects lure us into theaters, and propel films like Star Wars and Jurassic Park to record sales. Music videos usher us before surreal visual worlds, and spawn TV stations like MTV and VH-1. Video games swallow kids (and adults) for hours on end, and swell the bottom lines of companies like Sega and Nintendo. Virtual reality, popularized in movies like Disclosure and Lawnmower Man, can immerse us in visual worlds of unprecedented realism, and promises to transform not only entertainment but also architecture, education, manufacturing, and medicine. As a culture we vote with our time and wallets and, in the case of entertainment, our vote is clear. Just as we enjoy rich literature that stimulates our rational intelligence, or a moving story that engages our emotional intelligence, so we also seek out and enjoy new media that challenge our visual intelligence. Or consider marketing and advertisement, which daily manipulate our buying habits with sophisticated images. Corporations spend millions each year on billboards, packaging, magazine ads, and television commercials. Their images can so powerfully influence our behavior that they sometimes generate controversy---witness the uproar over Joe Camel. If you're out to sell something, understanding visual intelligence is, without question, critical to the design of effective visual marketing. And if you're out to buy something, understanding visual intelligence can help clue you in to what is being done to you as a consumer, and how it's being done. This book is a highly illustrated and accessible introduction to visual intelligence, informed by the latest breakthroughs in vision research. Perhaps the most surprising insight that has emerged from vision research is this: Vision is not merely a matter of passive perception, it is an intelligent process of active construction. What you see is, invariably, what your visual intelligence constructs. Just as scientists intelligently construct useful theories based on experimental evidence, so vision intelligently constructs useful visual worlds based on images at the eyes. The main difference is that the constructions of scientists are done consciously, but those of vision are done, for the most part, unconsciously.
series other
last changed 2003/04/23 15:14

_id ae1b
authors Zarnowiecka, Jadwiga C.
year 1998
title Chaos, Databases and Fractal Dimension of Regional Architecture
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 267-270
doi https://doi.org/10.52842/conf.ecaade.1998.267
summary Modern research on chaos started in the 60's from an incredible finding that simple mathematical equations can model systems as complicated as waterfalls. In the 70's some scientists in the USA and in Europe started to find their way through the chaos. They were dealing with different spheres of science: mathematics, physics, biology, chemistry, physiology, ecology, economy. In the next 10 years? time the term 'chaos' has become generally known in science. Scientists gather in research groups according to their interests as to chaos and secondly according to their scientific specialities. (Gleick 1996) Objects that described chaos were irregular in shape, ripped. In 1975 Benoit Mandelbrot called them fractals. Fractal dimension that described fractal objects was also his invention. Fractal dimension is a way to measure quality: the degree of harshness, uneveness, irregularity of a given object. Carl Bovill (1996) showed how one can use fractal geometry in architecture and designing. This very fact made me try to use fractal geometry to deal with regional architecture. What or who is the degree of regionality of a given object to be for? A specially qualified person is able to state it nearly automatically. However, regionality is in some sense an unmeasurable feature. While dealing with data basis or checking particular projects, creation of procedures of automatic acquiring information concerning regionality is becoming a necessity.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/20zarnowiecka/index.htm
last changed 2022/06/07 07:57

_id 10
authors Bund, Elizabeth and Barros, Diana Rodriguez
year 1998
title Imagen Digital: Proceso Proyectual Confluyente (Digital Image: Confluyent Design Process)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 84-93
summary The introduction of new technologies in architectural projects causes, in first place, their adaptation as an operative and instrumental resource, without considering the deep changes that their use generates. The digital image, understood as a reference of this process, is spreading and conquering new fields on ideation, representation and communication. The absence of theoretical support, that would offered another point of view is evident, so consequently we believe that is necessary to consider approaches qualitatively new, from epistemologic, methodologic, perceptive and aesthetic fields, in order to transfer them into professional an teaching practice. Today, the annulment of universal validity rules, and the different and contradictory interpretations, oblige to center our view in the interrelationships and,connections, rather than in the definition of each entity. This work develops synthetically a study which confronts and compares traditional project process - composition and heuristic design supported by linear proceeding and analogic media, with confluent project process, based on digital data and hypermedia links, generated simultaneously. The variants of the topics analyzed are at the same time the project itself, the underlying thinking model, and the project communication strategies.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ga0021
id ga0021
authors Eacott, John
year 2000
title Generative music composition in practice - a critical evaluation
source International Conference on Generative Art
summary This critical evaluation will discuss 4 computer based musical works which, for reasons I shall explain, I describe as non-linear or generative. The works have been constructed by me and publicly performed or exhibited during a two year period from October 1998 to October 2000. ‘In the beginning…’ interactive music installation, strangeAttraction, Morley Gallery, London. July 1999 ‘jnrtv’ live generative dance music May 1999 to Dec 2000 ‘jazz’ interactive music installation, another strangeAttraction Morley Gallery, London. July 2000-09-26 ‘the street’ architectural interactive music installation, University of Westminster Oct 2000 Introduction I have always loved the practice of composing, particularly when it means scoring a work to be played by a live ensemble. There is something about taking a fresh sheet of manuscript , ruling the bar lines, adding clefs, key and time signatures and beginning the gradual process of adding notes, one at a time to the score until it is complete that is gratifying and compensates for the enormous effort involved. The process of scoring however is actually one distinct act within the more general task of creating music. Recently, the notion of ‘composing’ has met challenges through an increased interest in non-linear compositional methods. It is actually the presence of Chaotic or uncontrolable elements which add real beauty to music and many if not all of the things we value. If we think of a sunset, waves lapping on the shore, plants, trees a human face and the sound of the human voice, these things are not perfect and more importantly perhaps, they are transient, constantly changing and evolving. Last year and again this year, I have organised an exhibition of interactive , non-linear music installations called 'strangeAttraction'. The title refers to what Edward Lorenz called a ‘strange attractor’ the phenomenon that despite vast degrees of Chaos and uncertainty within a system, there is a degree of predictability, the tendency for chaotic behaviour to ‘attract’ towards a probable set of outcomes. Composition that deals with 'attractors' or probable outcomes rather than specific details which are set in stone is an increasingly intriguing notion.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9811
id ga9811
authors Feuerstein, Penny L.
year 1998
title Collage, Technology, and Creative Process
source International Conference on Generative Art
summary Since the turn of the twentieth century artists have been using collage to suggest new realities and changing concepts of time. Appropriation and simulation can be found in the earliest recycled scraps in Cubist collages. Picasso and Braque liberated the art world with cubism, which integrated all planes and surfaces of the artists' subjects and combined them into a new, radical form. The computer is a natural extension of their work on collage. The identifying characteristics of the computer are integration, simultaneity and evolution which are inherent in collage. Further, the computer is about "converting information". There is something very facinating about scanning an object into the computer, creating a texture brush and drawing with the object's texture. It is as if the computer not only integrates information but different levels of awareness as well. In the act of converting the object from atoms to bits the object is portrayed at the same conscious level as the spiritual act of drawing. The speed and malleability of transforming an image on the computer can be compared to the speed and malleability of thought processes of the mind. David Salle said, "one of the impulses in new art is the desire to be a mutant, whether it involves artificial intelligence, gender or robotic parts. It is about the desire to get outside the self and the desire to trandscend one's place." I use the computer to transcend, to work in different levels of awareness at the same time - the spiritual and the physical. In the creative process of working with computer, many new images are generated from previous ones. An image can be processed in unlimited ways without degradation of information. There is no concept of original and copy. The computer alters the image and changes it back to its original in seconds. Each image is not a fixed object in time, but the result of dynamic aspects which are acquired from previous works and each new moment. In this way, using the computer to assist the mind in the creative processes of making art mirrors the changing concepts of time, space, and reality that have evolved as the twentieth century has progressed. Nineteenth-century concepts of the monolithic truth have been replaced with dualism and pluralism. In other words, the objective world independent of the observer, that assumes the mind is separate from the body, has been replaced with the mind and body as inseparable, connected to the objective world through our perception and awareness. Marshall Mcluhan said, "All media as extensions of ourselves serve to provide new transforming vision and awareness." The computer can bring such complexities and at the same time be very calming because it can be ultrafocused, promoting a higher level of awareness where life can be experienced more vividly. Nicholas Negroponte pointed out that "we are passing into a post information age, often having an audience of just one." By using the computer to juxtapose disparate elements, I create an impossible coherence, a hodgepodge of imagery not wholly illusory. Interestingly, what separates the elements also joins them. Clement Greenberg states that "the collage medium has played a pivotal role in twentieth century painting and sculpture"(1) Perspective, developed by the renaissance archetect Alberti, echoed the optically perceived world as reality was replaced with Cubism. Cubism brought about the destruction of the illusionist means and effects that had characterized Western painting since the fifteenth century.(2) Clement Greenberg describes the way in which physical and spiritual realities are combined in cubist collages. "By pasting a piece of newspaper lettering to the canvas one called attention to the physical reality of the work of art and made that reality the same as the art."(3) Before I discuss some of the concepts that relate collage to working with computer, I would like to define some of the theories behind them. The French word collage means pasting, or gluing. Today the concept may include all forms of composite art and processes of photomontage and assemblage. In the Foreword on Katherine Hoffman's book on Collage Kim Levin writes: "This technique - which takes bits and pieces out of context to patch them into new contexts keeps changeng, adapting to various styles and concerns. And it's perfectly apt that interpretations of collage have varied according to the intellectual inquiries of the time. From our vantage point near the end of the century we can now begin to see that collage has all along carried postmodern genes."(4) Computer, on the other hand is not another medium. It is a visual tool that may be used in the creative process. Patrick D. Prince's views are," Computer art is not concrete. There is no artifact in digital art. The images exist in the computer's memory and can be viewed on a monitor: they are pure visual information."(5) In this way it relates more to conceptual art such as performance art. Timothy Binkley explains that,"I believe we will find the concept of the computer as a medium to be more misleading than useful. Computer art will be better understood and more readily accepted by a skeptical artworld if we acknowledge how different it is from traditional tools. The computer is an extension of the mind, not of the hand or eye,and ,unlike cinema or photography, it does not simply add a new medium to the artist's repertoire, based on a new technology.(6) Conceptual art marked a watershed between the progress of modern art and the pluralism of postmodernism(7) " Once the art is comes out of the computer, it can take a variety of forms or be used with many different media. The artist does not have to write his/her own program to be creative with the computer. The work may have the thumbprint of a specific program, but the creative possibilities are up to the artist. Computer artist John Pearson feels that,"One cannot overlook the fact that no matter how technically interesting the artwork is it has to withstand analysis. Only the creative imagination of the artist, cultivated from a solid conceptual base and tempered by a sophisticsated visual sensitivity, can develop and resolve the problems of art."(8) The artist has to be even more focused and selective by using the computer in the creative process because of the multitude of options it creates and its generative qualities.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 2
authors Montagu, Arturo
year 1998
title Desde La Computacion Grafica a los Sistemas CAD Actuales. Una Vision Historica de la Revolucion Producida en los Sistemas de Representacion Grafica (1966-1998) (From Graphical Computation to Present CAD Systems. An Historical Vision of the Revolution Produced in the Systems of Graphical Representation (1966-1998))
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 14-21
summary Throughout these pages are made known the persons, the projects and the books that have influenced my actions and that they will be mentioned in form underlined in this paper. I have to emphasize that since 1965 to 1970, and in the continuous search that I was accomplishing to find data and bibliography adapted to the topic of computer graphics, only two series of publications contained topics related to this matter at that time: one was the IBM Journal and the other series was the communications of the ACM. The purpose of this work is to make known an experience accomplished throughout 30 years of intense activity in finding new methods of drawing and design, based on the use of digital computers, mainly in Argentina, and during certain periods of time in Great Britain and since 1971 during short visits to the United States and also in France. The first idea emerged in the year 1965 when I was assistant teacher at the School of Architecture of the University of Buenos Aires, as a combination of ideas between the concepts of spatial geometry and the current morphological studies that we taught in the Course of professor Gaston Breyer. However the idea of automatic drawing emerged observing the operation of the first scientific digital computer installed in the Computing Institute of the Faculty of Sciences of the University of Buenos Aires in 1963 (Sadosky 1963). At the beginning, the approach to the computer were not accomplished from a strictly scientific point of view, but it was implying a kind of "sincresis" (Koheler 1940) it is more than a synthesis, because I was tried to combine ideas that have had its origin in different worlds of thinking, the analogous world and the digital world, and this situation was very difficult to accept at that time.The designing procedures in the decade 1960's was deeply rooted (and still continues) in the architectural design field as a result of a drawing process based in heuristic techniques.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 7400
authors Rizal, H. and Ahmad Rafi, M.E.
year 2002
title The Impact of Internet Enabled Computer Aided Design (iCAD) in Construction Industry
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 085-92
doi https://doi.org/10.52842/conf.caadria.2002.085
summary The advent of the Internet has opened up and given, particularly, the developing countries and the world in general, a transformation into collective intelligence (Levy, 1998) societies linked to digital communication (Rafi, 2001). Apart from large corporations, the rapid evolution of border-less communication has also synergise between the art and science expertise to form low-cost internet-based networks that have become multi-million dollar companies within a short period of time (e.g. Linux) (Rafi, 2001). In the context of architectural designs and construction industries, the birth of Internet-based CAD (iCAD) solutions has offered a new dimension to architectural practice. The function of CAD has expanded as a tool to communicate and collaborate as well as to better control all phases of the architectural practices. This paper will review the current available iCAD tools and explore the possible utilisation of iCAD in architectural practices. The opportunities for modifying current professional practice standards to best use iCAD will be rationalised as well as the elements in ensuring the effectiveness of iCAD implementation. The final component of the paper will be an evaluation framework to measure the value of iCAD in an architectural practice. The framework will become an early platform for an architectural practice to decide and plan their future in utilising and applying iCAD in the most efficient way.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:56

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ˇ§too newˇ¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 6433
authors Agranovich-Ponomarieva, E. and Litvinova, A.
year 1998
title The "Real Space - Cyberspace" Paradigm
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 141-145
summary In a chain of "real - perceived - imagined space" the computer reduces to a uniform model of only real and imagined space. It cannot undertake man's function or it cannot build the perception model. However, perception assumes physiological perception, psychological estimation and understanding, and emotional ho-experience. For a person the seizing of space during perception is constructing temporary spatial images and their development. The communicative relations of the person with environment are established during revealing internal and external structural communications and the interior represents the message, unwrapped in space and perceived in time. The real space is formed under influence of the sum of conceptual restrictions. The character of these restrictions depends on a super idea, a type of an initial situation, character of installations and on social-cultural stereotypes of the author. Without this stage transition to real architectural object is impossible. Result of activity of an architect at this stage becomes creation hypothetical cyberspace, with its own peculiarities and laws.
series plCAD
last changed 1999/04/08 17:16

_id de77
authors Ahmad Rafi, M.E.
year 1998
title Computer animation for architectural visualisation
source University of Strathclyde
summary This thesis critically reviews the state of architectural animation, and relates this specific field to the more general motion-based representations, particularly traditional film-making techniques. It identifies key elements from traditional filmmaking and shows how these elements can improve computer-based architectural animation. The process of identification of the key elements from traditional film-making starts with a critical survey of the use of motion-based representation in local architectural practices and an empirical analysis of several architectural-based documentary films and past and present computer animations. All of the key ideas are illustrated on video by comparing real shooting clips to digital sequences focusing on production and post-production works. Some of these were implemented in two live projects ( Ministry of Finance, Malaysia and Damansara Parade ) for architects to understand the real problems and potentials in each process. These sets of illustrations expand the architect ideas to make full use of the motion-based process to improve the skill of combining architectural information in a good animation. The overall production process becomes more efficient when the motion-based footage is edited using a non-linear editing platform as it enhances the professional appearance as well as vastly saving most of the production time. The thesis concludes with specific recommendations relative to the stage at which the animation is produced. This technology can be best utilised with the right skills (a gained from film-making) and an understanding of each stage that requires a different level of input and gives a certain impact to the viewers.
series thesis:PhD
email
last changed 2003/11/21 15:15

_id ascaad2006_paper19
id ascaad2006_paper19
authors Arjun, G. and J. Plume
year 2006
title Collaborative Architectural Design as a reflective Conversation: an agent facilitated system to support collaborative conceptual design
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In this paper, definitions of collaborative design are discussed and understood in terms of a designer’s cognitive collaborations to explore his/her experiential memory for remote idea associations. Based on Schon’s reflective practice theory, Valkenburg and Dorst’s (1998) description of collaborative team designing is adopted as a model for a proposed design conversation system. The design conversation system is aimed at triggering the experiential memory of the designer by associating significant ideas from different design domains to provide different perspectives of a design situation. The paper describes a proposed framework for the design conversation system incorporating computational agents in a blackboard architecture environment.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 4894
authors Asanowicz, Aleksander
year 1998
title Approach to Computer Implementation in Architectural Curriculum
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 4-8
doi https://doi.org/10.52842/conf.ecaade.1998.004
summary This paper examines traditional teaching methods in architecture and identifies opportunities which are offered by computers for changing the teaching process. Introduction of CAAD to the teaching schedules unquestionably and explicity uncovered a need of changes within the whole schedule of study. In this paper we will submit the thesis that the problem does not lay in how will CAAD be incorporated into the architectural curriculum, because it is the CAAD that has the potential to become an integrating factor of architectural curriculum.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/22asanowicz/index.htm
last changed 2022/06/07 07:54

_id 21
authors Barroso, Jorge
year 1998
title Reflexiones Sobre la EnseŇanza de la Arquitectura, la Informatica e Internet (Reflections on the Teaching of the Architecture, Computing and the Internet)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 174-179
summary This paper proposes a reflection upon the teaching of architecture as seen from the actual practice of the profession within the context of the changes caused by the widespread use of computers and Internet in recent years. This proposal designates the present time as "semic revolution", superseding denominations like post industrial" or information revolution", emphasizing that the "mental prosthesis" created by man represents the highest degree of exploitation of his innerness as a "semic subject". A brief epistemological framework serves to lay the foundation for the concepts of imagination, creation, and design, differentiating the creator by his characteristic of requiring or not, semic mediation in order to reach his goals. The dominant use of new instruments which serve to represent and operate the "primary virtual object" giving priority to the comprehension and function of the new tool over the acquisition of information and ability to use it, is proposed when carried over to the field of application. The integration of internal networks through email strives not only to facilitate document transmission, exercises, group work, etc. but to understand the new dimension in the intellectual activities of man.
series SIGRADI
email
last changed 2016/03/10 09:47

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id bb72
authors Bourdot, P., Krus, M., Gherbi, R.
year 1998
title Cooperation Between Reactive 3D Objects and a Multimodal X Window Kernel for CAD
source Bunt, H., Beun, R.J., Borghuis, T. (Eds.). Multimodal Human-Computer Communication : Systems, Techniques, and Experiments. Berlin : Springer
summary From the early steps of sketching to final engineering, a frequent and very important activity in designing objects is to perform graphical and spatial simulations to solve the constraints on the objects which are being designed. But when we analyse work situations involving the use of CAD systems, it is today an acknowledged fact that these tools are not helpful to perform these types of simulations. While knowledge modeling based on form feature concepts already offers some possibilities for attaching behaviour to objects, the simulation activity requires in addition a `real time' and `intelligent' management of the interactions between the 3D virtual objects and the CAD user. Our general purpose is to study how future CAD systems could be improved to achieve the simulation steps of object design. In this context we present some issues concerning the cooperation between a model of reactive 3D objects and a multimodal X Window kernel. We have developed a prototype of a system where objects with reactive behaviour can be built, and with which the user can interact with a combination of graphical actions and vocal commands. This prototype is used to evaluate the feasability and the usefulness of the integration of such techniques in futur applications that would be used by object designers in a real working context. We describe the current state of this system and the planned improvements.
series other
last changed 2003/11/21 15:16

_id 2873
authors Brin, S. and Page, L.
year 1998
title The Anatomy of a Large-Scale Hypertextual Web Search Engine
source Computer Science Department, Stanford University, Stanford, CA
summary In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/ To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of web pages involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance of large-scale search engines on the web, very little academic research has been done on them. Furthermore, due to rapid advance in technology and web proliferation, creating a web search engine today is very different from three years ago. This paper provides an in-depth description of our large-scale web search engine -- the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information present in hypertext to produce better search results. This paper addresses this question of how to build a practical large-scale system which can exploit the additional information present in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
series other
email
last changed 2003/11/21 15:16

_id 2a12
authors Burry, Mark and More, Gregory
year 1998
title Representation, Realism and Computer Generated Architectural Animation
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 241-249
summary This paper documents a simple architectural form which, but for computer generated animation, has no ready alternative explanatory process for its complex generation. The subject is a column in the nave of the Sagrada Familia Church in Barcelona conceived by Gaudí at the beginning of this century without the contemporary opportunities for animated design exploration. The column is based on a set of counter-rotating mutually interfering profiles. As the column gains height, the profiles increase in interference with each other resulting in an increasingly fluted cross section, a tendency towards the Doric Order. For most, however, there is no easy access to a plausible explanation of the inherent rationale for the column. Animating the generation of the column reveals a unique and concealed sublimation of natural patterns of growth. Animation aids an understanding of the effect of the fourth dimension on design itself by releasing a meaning of time from an otherwise inanimate object. Here animation is used to decipher one aspect of the mystery of Gaudí's design while strengthening another: the source and conceptual power of Gaudí to anticipate this phenomenon. Rather than trivialising this design mystery, the explanatory role of the animation enriches comprehension of the formal concept of mutation through displacement or an evolutionary design paradigm. The paper discuss the implications of this ability to show transition, translation and dislocation without delving too deeply into how the animation was made, nor indeed the subject which, after all, requires animation to fully represent its less tangible qualities.
series plCAD
email
last changed 2003/05/17 10:01

_id ga9808
id ga9808
authors Ceccato, Cristiano
year 1998
title MICROGENESIS, The Architect as Toolmaker: Computer-Based Generative Design Tools and Methods
source International Conference on Generative Art
summary The purpose of this paper is to illustrate the results of various stages of research into the development of generative design methods and tools, conducted at the Architectural Association School of Architecture (London), Imperial College of Science, Technology and Medicine (London), and independently. A brief introduction explains the philosophy behind generative design methods and their basic principles. A number of computer software tools and projects developed by the author are then used to illustrate the methodology, techniques and features of generative design and its organisation of information.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_826451 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002