CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 261

_id bb72
authors Bourdot, P., Krus, M., Gherbi, R.
year 1998
title Cooperation Between Reactive 3D Objects and a Multimodal X Window Kernel for CAD
source Bunt, H., Beun, R.J., Borghuis, T. (Eds.). Multimodal Human-Computer Communication : Systems, Techniques, and Experiments. Berlin : Springer
summary From the early steps of sketching to final engineering, a frequent and very important activity in designing objects is to perform graphical and spatial simulations to solve the constraints on the objects which are being designed. But when we analyse work situations involving the use of CAD systems, it is today an acknowledged fact that these tools are not helpful to perform these types of simulations. While knowledge modeling based on form feature concepts already offers some possibilities for attaching behaviour to objects, the simulation activity requires in addition a `real time' and `intelligent' management of the interactions between the 3D virtual objects and the CAD user. Our general purpose is to study how future CAD systems could be improved to achieve the simulation steps of object design. In this context we present some issues concerning the cooperation between a model of reactive 3D objects and a multimodal X Window kernel. We have developed a prototype of a system where objects with reactive behaviour can be built, and with which the user can interact with a combination of graphical actions and vocal commands. This prototype is used to evaluate the feasability and the usefulness of the integration of such techniques in futur applications that would be used by object designers in a real working context. We describe the current state of this system and the planned improvements.
series other
last changed 2003/11/21 15:16

_id 0471
authors Bruton, B.
year 1998
title Grammars and Pedagogy - Towards new Media Art and Design Education Strategies
doi https://doi.org/10.52842/conf.caadria.1998.385
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 385-394
summary The impact of computational grammatical design on pedagogy has received little attention in art education due to the dominant modes of traditional approaches to art and design education. This paper explores the pedagogical implications of grammatical strategies using computers for judgements of design within an art educational setting. Grammatical strategies are studied for their effect on the judgements of novice artists in a new media educational context. It is argued that concepts of grammar and views of contingency are used in a variety of senses in the conception and form making of artists; that finding methods for discussing and utilising complex visual information is aided by grammatical formalisation; that these strategies are evidently effective at both early and mature stages of the realisation of a project. The research explores the relation between computer and art on three levels in which grammar is used: as a sense of grammar, as a computational paradigm and as a description of a kind of computer program. Grammatical formalism is apparent in two dimensional linear and non-linear animations using Photoshop, Premiere and Director, and in solid modelling programs such as Extreme 3D, Form Z, Strata Studio Pro, 3D Studio Max and SoftImage. Web site construction also impacts on the judgements of 2D and 3D design. Computational grammatical programs generate forms that reflect alternative understandings of art and design. Art practise is defined in terms of developing consistent and appropriate design language for the contingency at hand. Form making using grammatical tools, both recursive and array types, is discussed in terms of their applicability and educative value. Reference is made to formal qualities for critique and strategic capability of alternative pedagogy for generation of forms. Examples provided show how simple rule sets develop into complex derivational sequences that challenge traditional strategies for computer imaging. The paper demonstrates the value of a sense of grammars for novice art and design practitioners by using first hand examples of experimental work at the South Australian School of Art, University of South Australia. For novice artists and designers, grammars in conjunction with reflective practice is offered as a useful mind set that supports an interest in actively defining a new kind of art. Illustrations provided show the utility of a contingent sense of grammar for pedagogy and highlights the significant role of grammar in pedagogy.
keywords Grammar, Pedagogy, Computer, Art, Design
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id 1c6b
authors Mase, K., Sumi, Y. and Nishimoto, K.
year 1998
title Informal conversation environment for collaborative concept formation
source Community Computing: Collaboration over Global Information Networks, eds. T. Ishida. John Wiley & Sons
summary This chapter focuses on facilitating the early stages of community formation. We spend a great deal of time every day in informal conversations, which are very important for the early stages of forming various kinds of communities. People engaged in conversation will not only share information, but also try to listen to and understand others, and as well as work together to find common objectives. In the early stages of forming the communities, agreement on a common concept through such a process is an essential element in the bonding of the group. Conversation environments on networked computers, e.g., via e-mail, online chat, and news groups, eliminate the spatial and temporal constraints of forming these communities but allow for the reuse of accumulated dialogs from previous interactions. Moreover, a computerized environment can directly support information sharing and mutual understanding. Conventional computerized conversation support systems, however, often force their users to follow some predetermined conversation model, prepared by designers beforehand. Thus, it can be difficult to apply these systems to informal conversations. We are developing a system called AIDE (Augmented Informative Discussion Environment) that facilitates our informal daily conversations. It does not require users to provide additional information in designated forms during a conversation, but rather it provides functionality to enhance and support the informal conversation. AIDE features three main functions: the discussion viewer, the conversationalist agent and the personal desktop. Using these functions, the participants can attain mutual understanding, crystallize ideas, and share common concepts. AIDE is considered to be not only a tool for supporting informal conversation but also useful Communityware, especially for facilitating the initial stage of community formation. This chapter first discusses a model of the group thinking process and applies it to community formation. Then, the structure of the AIDE system is presented using a few example conversations to illustrate how the AIDE system can support communication between people. AIDE displays potential as communityware.
series other
last changed 2003/04/23 15:14

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id bc34
authors Valkenburg, R.C.
year 1998
title Shared understanding as a condition for team design
source Automation in Construction 7 (2-3) (1998) pp. 111-121
summary The growing importance of teams in design introduces challenges and complications for designers to work effectively. In team work we can make a difference between the individual level and the team level. The individual designers have to tune their personal understandings about the design content to achieve a shared understanding. In this paper we will build a conceptual theoretical framework in which we try to capture the essence of designing within a team. We will show how the team of the Delft workshop 'Analysing Design Activity' associates with this framework. With the outcome of this explorative analysis we will create a basis for further research on this subject.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 3
authors Andia, Alfredo
year 1998
title Computadoras y Arquitectura en la Era Digital (Computers and Architecture in the Digital Era)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 22-31
summary It seems that when architects think, and talk about computers, they only reflect on very narrow images of the phenomenon. Architects think that the impact of computers in their profession is only related to how PCs, CAD/CAM, networks, software, peripherals, can improve the way they work today. Architects, by enlarge, are unable to reflect beyond the screen of their computers and the wall of their offices when it comes to recognize the real consequences resulting from the new technological advances. In this paper we argue that we should think differently. We must recognize that computers are having much more profound impact on the profession. Computers - the technology of the fantastic, par excellence - are changing the city! They are fundamentally transforming the way we use space, and buildings! Computers are beginning to create new kinds of urban cultures and infrastructures. Building types such as offices, banks, retail spaces, and museums are being transformed into virtual workplaces, telecommuting centers, networks of automated teller machines, home banking, smart stores and multimedia experiences. Computers are transforming the concept of working, the concept of banking, the concept of shopping, etc. In the end, something fundamental about the architecture of these activities.
series SIGRADI
email
last changed 2016/03/10 09:47

_id b9c2
authors Bhavnani, S.K. and John, B.E.
year 1998
title Delegation and Circumvention: Two Faces of Efficiency
source Proceedings of CHI'98 (1998), 273-280
summary Throughout history, inefficient methods to use devices have been replaced by more efficient ones. This shift typically occurs when users discover how to &legate work to the powers of a tool, and to circumvent its liiitations. Strategies of delegation and circumvention, therefore, appear to be the core of efficient use. To show how this approach can expiain the relationship between tools and strategies in complex computer systems, we describe five ways to perform a real-world drawing task with current as well as 5.rture tools. We then present five corresponding GOMS models that demonstrate the value of efficient strategies when compared to the observed behavior of a professional CAD user. We conclude by presenting a generalized framework to characterize efficient strategies and discuss its relevance to design and training.
keywords Strategies; GOMS; Efficiency; Productivity
series other
email
last changed 2003/11/21 15:16

_id ddss9808
id ddss9808
authors Boelen, A.J.
year 1998
title Pattern Matching for Decision Support
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary In this paper is discussed how we can use pattern matching techniques in combination with object orientation to support decision makers in arranging offices and industrial and commercial facilities in existing urban areas. The method used is based on the findings of a Ph.D. project almost finishedwhen writing this. The tool under development is specifically useful for rehabilitation of deteriorated industrial or commercial areas.I consider such an area already occupied and surrounded with all kinds of urban objects and connected to all kinds of infrastructure. I can describe this area in available objects and facilities. Furthermore we can describe the areas capacity left within the infrastructure, the capacity in forexample work force or clients and the available band width in noise or pollution. By describing the area in terms of availability of capacity to absorb or produce flows of people, goods, energy and information we sketch the room available for certain types of industrial or commercial facilities. I developed a technique to describe industrial and commercial facilities in such a way that we enable the match between these and the characteristics of an area available. Pattern matching techniquesenable the system to generate best matches between available areas, locations and facilities. This model can be adapted in several object oriented geographical information systems and be integrated with other information systems that for example calculate the pollution of certain kinds of facilities. The rules to match with are partly based on objective, measurable data like available capacity on the electricity network and needed electrical power for certain facilities. Other matching rules are based on political norms on for example acceptable pollution levels and suggested pollution of facilities. The paper presents the problem area of industrial area rehabilitation, describes the architecture of the modeling technique and presents the first findings of implementation studies.
keywords Pattern matching, Object GIS, Urban object modeling, Facility planning
series DDSS
last changed 2003/11/21 15:16

_id ddss9809
id ddss9809
authors Brondino, Nair Cristina Margarido and Da Silva, Antônio Nélson Rodrigues
year 1998
title A comparison of land valuation methods supported by GIS
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The purpose of this work was to study three different strategies for the appraisal of urban land. The first, a theoretical strategy created by the authors of this study to reproduce the common conditions of Brazilian cities, uses increments and reductions in the value of a square meter of land according to each lot’s individual features. The second method, based on Multiple Regression techniques, is widely used for valuation purposes. Finally, the effectiveness of Artificial Neural Networks to deal with thiskind of problem is studied. A sample of 157 lots was collected from several neighbourhoods of a small Brazilian city for the case study. The lot features recorded were area, width, shape, distance to the downtown district of the city through the street network, existence of fences and paved sidewalks, and market price. Prediction errors have been estimated for each of the three methods in order to compare their results. Predicted and error values, added to Geographical Information Systems, may be used to build thematic maps and to check how each strategy applies to different areas of the city. The analyses of error values conducted in this study showed that Artificial Neural Networks presented the best performance as a land appraisal method for the case studied.
series DDSS
email
last changed 2003/11/21 15:16

_id e513
authors Chaikin, George
year 1998
title The Computer and the Studio
doi https://doi.org/10.52842/conf.ecaade.1998.051
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 51-54
summary The studio is the primary place of architectural education - the place where the warp of representation and the weft of technique are woven together. Architecture is taught as a domain of ideas, ideas about how and why buildings are built, about the dialectic between concept and materiality. To the architectural student, the drawing is the exemplar of the quality of work he or she will expect in the final construction process. As such, it is very important that the student appreciate the "materiality" of the work to be realized, and this is best done through the education of the whole person, of the entire cognitive mechanism, which most certainly includes the hands. We feel strongly that the student must engage in the creative process in a profoundly physical way, must learn the art and joy of making things, and only then can she or he appreciate the representational abstraction offered by the computer.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:55

_id fb22
authors Chien, Sheng-Fen
year 1998
title Supporting information navigation in generative design systems
source Camegie Mellon University, School of Architecture
summary Generative design systems make it easier for designers to generate and explore design altematives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease. Such aids may improve the usability of generative design systems and encourage their use in architectural practice. This dissertation presents a comprehensive approach to support navigation in generative design systems. This approach takes account of studies related to human spatial cognition, wayfinding in physical environments, and information navigation in electronic media. It contains a general model of design space, basic navigation operations, and principles for designing navigation support. The design space model describes how the space may grow and evolve along predictable dimensions. The basic operations facilitate navigation activities in this multi-dimensional design space. The design principles aim at guiding system developers in creating navigation utilities tailored to the needs of individual design systems. This approach is validated through prototype implementations and limited pilot usability studies. The validity of the design space model and basic navigation operations is examined through the development of a design space navigation framework that encapsulates the model and operations in a software environment and provides the infrastructure and mechanisms for supporting navigation. Three prototype navigation tools are implemented using this framework. These tools are subjected to usability studies. The studies show that these tools are easy to leam and are efficient in assisting designers locating desired information. In summary, it can be demonstrated that through the prototype implementations and usability studies, this approach offers sufficient support for the design and implementation of navigation aids in a generative design system. The research effort is a pioneer study on navigation support in generative design systems. It demonstrates why navigation support is necessary; how to provide the support; and what types of user interaction it can offer. This research contributes to information navigation studies not only in the specific domain of generative design system research, but also in the general field of human-computer interaction.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id aa52
authors Chiu, Mao-Lin
year 1998
title The Design Guidance of CSCW - Learning from Collaborative Design Studios
doi https://doi.org/10.52842/conf.caadria.1998.261
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 261-270
summary Computer supported collaborative work (CSCW) becomes important for the architectural practice and design education in recent years. Design guidance on design operations facilitates design studios to achieve their educational and research purposes. This study depicts the experience of computer-supported collaborative design learned from three collaborative design studios. Design guidance can advise participants to understand the purpose of communication in CSCW, anticipate design collaboration, and formulate design operations by the process model. Based on the observations of CDS, the discussion focuses on how to develop guidance on design operations according to the following factors: (1) structured framework, (2) the kind of technology, (3) the level of communication, and (4) the process model of CSCW.
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:56

_id a96f
id a96f
authors Clayton, M., Johnson, R., Song, Y and Al-Qawasmi, J.
year 1998
title Delivering Facility Documentation using Intranet Technology
doi https://doi.org/10.52842/conf.acadia.1998.240
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 240-253
summary Intranet technologies present new opportunities for delivering facility documentation for use in facility management. After the design stage, building documentation is reused to support construction and then facility operation. However, a common perception is that construction documents and as-built drawings are less than optimal for reuse to support operations. We have conducted a study of facility management processes and the information content of facility documentation in the context of information technologies that are emerging into the marketplace. The study provides guidance for facility managers who are implementing and fielding new information technology systems. A better understanding of information needs during operations may also help designers to better structure their own documents for reuse. An analysis of documents that are used throughout the life cycle of facilities has led us to a characterization of operations documents that are distinct from design drawings, record drawings or as-built drawings. From an analysis of facility management processes, we have identified different roles for facility documentation in those processes. Facility documentation may be used as a resource, as input, or as output. Furthermore, from interviews of facility management personnel, we identified facility information that was rated high in importance and low in satisfaction that might be targeted when implementing a facility information system. We prepared software demonstrations that show how the information may be extracted from drawings, entered into databases and then retrieved via Web and CAD interfaces. We suggest that operations documents consist of a variety of information types and require several kinds of information tools, including databases, CAD drawings and hypertext. Intranet technologies, databases and CAD software can be integrated to achieve facility management systems that address shortcomings in current facility management operations. In particular, intranet technologies provide improved accessibility to information for facility management customers and occasional users of the systems. Our study has produced recommendations based upon utility and ease-of-implementation for delivery of information from the design team to the owner, and among personnel during operation of the facility.

series ACADIA
email
last changed 2022/06/07 07:56

_id 04c9
authors Crandall, N.F. and Wallace , M.J. (ed.)
year 1998
title Work & Rewards in The Virtual Workplace
source Amacom
summary By now, telecommuting is a well-defined word in the corporate U.S. But how about frontline workplace? Or cyberlink workplace? Consultants Crandall and Wallace make convincing arguments about the efficacies of virtual work, and they outline detailed processes and qualifications for any organization contemplating such a move. In a very logical, almost scholarly, fashion, they define terms, explain implementation, demolish perceived and real obstacles, and prove their points via a few case histories. Yet this is not a cut-and-dried book, for the excitement of dramatic changes to our collective workplaces is captured in the descriptions. Chiat/Day assigns its employees a cell phone and a laptop, period. And at Ross Operating Valve, customers actually lead the creative design process. Job satisfaction? You bet. And a much more productive group of employees. Most important for companies interested in these virtual ideas will be the economics chapter, describing in black and white (and sometimes red) the costs involved.
series other
last changed 2003/04/23 15:14

_id ddss9829
id ddss9829
authors De Hoog, J., Hendriks, N.A. and Rutten, P.G.S.
year 1998
title Evaluating Office Buildings with MOLCA(Model for Office Life Cycle Assessment)
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary MOLCA (Model for Office Life Cycle Assessment) is a project that aims to develop a tool that enables designers and builders to evaluate the environmental impact of their designs (of office buildings) from a environmental point of view. The model used is based on guidelinesgiven by ISO 14000, using the so-called Life Cycle Assessment (LCA) method. The MOLCA project started in 1997 and will be finished in 2001 resulting in the aforementioned tool. MOLCA is a module within broader research conducted at the Eindhoven University of Technology aiming to reduce design risks to a minimum in the early design stages.Since the MOLCA project started two major case-studies have been carried out. One into the difference in environmental load caused by using concrete and steel roof systems respectively and the role of recycling. The second study focused on biases in LCA data and how to handle them. For the simulations a computer-model named SimaPro was used, using the world-wide accepted method developed by CML (Centre for the Environment, Leiden, the Netherlands). With this model different life-cycle scenarios were studied and evaluated. Based on those two case studies and a third one into an office area, a first model has been developed.Bottle-neck in this field of study is estimating average recycling and re-use percentages of the total flow of material waste in the building sector and collecting reliable process data. Another problem within LCA studies is estimating the reliability of the input data and modelling uncertainties. All these topics will be subject of further analysis.
keywords Life-Cycle Assessment, Office Buildings, Uncertainties in LCA
series DDSS
last changed 2003/08/07 16:36

_id 1d83
authors Dodge, M., Doyle, S. and Smith, A.
year 1998
title Visual Communication in Urban Planning and Urban Design
source Working Paper 2; Centre for Advanced Spatial Analysis Working Papers; London; June 1998
summary This Case Study documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web (WWW). First, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. The use of Virtual Worlds and their role in visualising urban form within multi-user environments is reviewed. The use of Virtual Worlds is developed into a study of the possibilities and limitations of Virtual Internet Design Arena's (ViDA's), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDA's is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan. Secondly, the role of photorealistic media in the process of communicating plans is examined. The process of creating photorealistic media is documented, and examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is that, although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling in the creation of Augmented Reality is reviewed. Augmented Reality is seen to provide an important step forward in the ability quickly and easily to visualise urban planning and urban design information. Third, the role of visual communication of planning data through GIS is examined in terms of desktop, three dimensional, and Internet based GIS. The evolution to Internet GIS is seen as a critical component in the development of virtual cities that will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality. Finally, a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design.
series other
last changed 2003/04/23 15:50

_id 5477
authors Donath, D., Kruijff, E., Regenbrecht, H., Hirschberg, U., Johnson, B., Kolarevic, B. and Wojtowicz, J.
year 1999
title Virtual Design Studio 1998 - A Place2Wait
doi https://doi.org/10.52842/conf.ecaade.1999.453
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 453-458
summary This article reports on the recent, geographically and temporally distributed, intercollegiate Virtual Design Studio based on the 1998 implementation Phase(x) environment. Students participating in this workshop had to create a place to wait in the form of a folly. This design task was cut in five logical parts, called phases. Every phase had to be finished within a specific timeframe (one day), after which the results would be stored in a common data repository, an online MSQL database environment which holds besides the presentations, consisting of text, 3D models and rendered images, basic project information like the descriptions of the phases and design process visualization tools. This approach to collaborative work is better known as memetic engineering and has successfully been used in several educational programs and past Virtual Design Studios. During the workshop, students made use of a variety of tools, including modeling tools (specifically Sculptor), video-conferencing software and rendering programs. The project distinguishes itself from previous Virtual Design Studios in leaving the design task more open, thereby focusing on the design process itself. From this perspective, this paper represents both a continuation of existing reports about previous Virtual Design Studios and a specific extension by the offered focus. Specific attention will be given at how the different collaborating parties dealt with the data flow and modification, the crux within a successful effort to cooperate on a common design task.
keywords Collaborative design, Design Process, New Media Usage, Global Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id a114
authors Faucher, Didier and Nivet, Marie-Laure
year 1998
title Playing with Design Intent: Integration of Physical and Urban Constraints in CAD
doi https://doi.org/10.52842/conf.acadia.1998.118
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 118-137
summary Our work deals with the exploration of a universe of forms that satisfy some design intents. That is, we substitute a “generate and test” approach for a declarative approach in which an object is created from its properties. In this paper we present an original method that takes into account design intents relative to sunlight, visibility and urban regulation. First of all we study how current CAD tools have considered these properties until now. Our conclusion is that the classical design / simulation / analysis process does not suit design practices, especially in the early stages. We think that an improved CAD system should offer the architect the option of manipulating abstract information such as design intents. We define an intent as a conceptual expression of constraints having an influence on the project. For instance, a visual intent will be stated with no reference to vision geometry: “ from this place, I want to see the front of the new building”. We show how to represent each of these constraints with a 3D volume associated to some characteristics. If some solutions exist, we are sure that they are included in these volumes. For physical phenomena we compute the volume geometry using the principles of inverse simulation. In the case of urban regulation we apply deduction rules. Design intents are solved by means of geometrical entities that represent openings or obstructions in the project. Computing constraint volumes is a way of guiding the architect in his exploration of solutions. Constraint volumes are new spaces that can restore the link between form and phenomenon in a CAD tool. Our approach offers the designer the possibility of manipulating design intents.

series ACADIA
email
last changed 2022/06/07 07:55

_id ga9811
id ga9811
authors Feuerstein, Penny L.
year 1998
title Collage, Technology, and Creative Process
source International Conference on Generative Art
summary Since the turn of the twentieth century artists have been using collage to suggest new realities and changing concepts of time. Appropriation and simulation can be found in the earliest recycled scraps in Cubist collages. Picasso and Braque liberated the art world with cubism, which integrated all planes and surfaces of the artists' subjects and combined them into a new, radical form. The computer is a natural extension of their work on collage. The identifying characteristics of the computer are integration, simultaneity and evolution which are inherent in collage. Further, the computer is about "converting information". There is something very facinating about scanning an object into the computer, creating a texture brush and drawing with the object's texture. It is as if the computer not only integrates information but different levels of awareness as well. In the act of converting the object from atoms to bits the object is portrayed at the same conscious level as the spiritual act of drawing. The speed and malleability of transforming an image on the computer can be compared to the speed and malleability of thought processes of the mind. David Salle said, "one of the impulses in new art is the desire to be a mutant, whether it involves artificial intelligence, gender or robotic parts. It is about the desire to get outside the self and the desire to trandscend one's place." I use the computer to transcend, to work in different levels of awareness at the same time - the spiritual and the physical. In the creative process of working with computer, many new images are generated from previous ones. An image can be processed in unlimited ways without degradation of information. There is no concept of original and copy. The computer alters the image and changes it back to its original in seconds. Each image is not a fixed object in time, but the result of dynamic aspects which are acquired from previous works and each new moment. In this way, using the computer to assist the mind in the creative processes of making art mirrors the changing concepts of time, space, and reality that have evolved as the twentieth century has progressed. Nineteenth-century concepts of the monolithic truth have been replaced with dualism and pluralism. In other words, the objective world independent of the observer, that assumes the mind is separate from the body, has been replaced with the mind and body as inseparable, connected to the objective world through our perception and awareness. Marshall Mcluhan said, "All media as extensions of ourselves serve to provide new transforming vision and awareness." The computer can bring such complexities and at the same time be very calming because it can be ultrafocused, promoting a higher level of awareness where life can be experienced more vividly. Nicholas Negroponte pointed out that "we are passing into a post information age, often having an audience of just one." By using the computer to juxtapose disparate elements, I create an impossible coherence, a hodgepodge of imagery not wholly illusory. Interestingly, what separates the elements also joins them. Clement Greenberg states that "the collage medium has played a pivotal role in twentieth century painting and sculpture"(1) Perspective, developed by the renaissance archetect Alberti, echoed the optically perceived world as reality was replaced with Cubism. Cubism brought about the destruction of the illusionist means and effects that had characterized Western painting since the fifteenth century.(2) Clement Greenberg describes the way in which physical and spiritual realities are combined in cubist collages. "By pasting a piece of newspaper lettering to the canvas one called attention to the physical reality of the work of art and made that reality the same as the art."(3) Before I discuss some of the concepts that relate collage to working with computer, I would like to define some of the theories behind them. The French word collage means pasting, or gluing. Today the concept may include all forms of composite art and processes of photomontage and assemblage. In the Foreword on Katherine Hoffman's book on Collage Kim Levin writes: "This technique - which takes bits and pieces out of context to patch them into new contexts keeps changeng, adapting to various styles and concerns. And it's perfectly apt that interpretations of collage have varied according to the intellectual inquiries of the time. From our vantage point near the end of the century we can now begin to see that collage has all along carried postmodern genes."(4) Computer, on the other hand is not another medium. It is a visual tool that may be used in the creative process. Patrick D. Prince's views are," Computer art is not concrete. There is no artifact in digital art. The images exist in the computer's memory and can be viewed on a monitor: they are pure visual information."(5) In this way it relates more to conceptual art such as performance art. Timothy Binkley explains that,"I believe we will find the concept of the computer as a medium to be more misleading than useful. Computer art will be better understood and more readily accepted by a skeptical artworld if we acknowledge how different it is from traditional tools. The computer is an extension of the mind, not of the hand or eye,and ,unlike cinema or photography, it does not simply add a new medium to the artist's repertoire, based on a new technology.(6) Conceptual art marked a watershed between the progress of modern art and the pluralism of postmodernism(7) " Once the art is comes out of the computer, it can take a variety of forms or be used with many different media. The artist does not have to write his/her own program to be creative with the computer. The work may have the thumbprint of a specific program, but the creative possibilities are up to the artist. Computer artist John Pearson feels that,"One cannot overlook the fact that no matter how technically interesting the artwork is it has to withstand analysis. Only the creative imagination of the artist, cultivated from a solid conceptual base and tempered by a sophisticsated visual sensitivity, can develop and resolve the problems of art."(8) The artist has to be even more focused and selective by using the computer in the creative process because of the multitude of options it creates and its generative qualities.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 13HOMELOGIN (you are user _anon_308696 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002