CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 543

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0471
authors Bruton, B.
year 1998
title Grammars and Pedagogy - Towards new Media Art and Design Education Strategies
doi https://doi.org/10.52842/conf.caadria.1998.385
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 385-394
summary The impact of computational grammatical design on pedagogy has received little attention in art education due to the dominant modes of traditional approaches to art and design education. This paper explores the pedagogical implications of grammatical strategies using computers for judgements of design within an art educational setting. Grammatical strategies are studied for their effect on the judgements of novice artists in a new media educational context. It is argued that concepts of grammar and views of contingency are used in a variety of senses in the conception and form making of artists; that finding methods for discussing and utilising complex visual information is aided by grammatical formalisation; that these strategies are evidently effective at both early and mature stages of the realisation of a project. The research explores the relation between computer and art on three levels in which grammar is used: as a sense of grammar, as a computational paradigm and as a description of a kind of computer program. Grammatical formalism is apparent in two dimensional linear and non-linear animations using Photoshop, Premiere and Director, and in solid modelling programs such as Extreme 3D, Form Z, Strata Studio Pro, 3D Studio Max and SoftImage. Web site construction also impacts on the judgements of 2D and 3D design. Computational grammatical programs generate forms that reflect alternative understandings of art and design. Art practise is defined in terms of developing consistent and appropriate design language for the contingency at hand. Form making using grammatical tools, both recursive and array types, is discussed in terms of their applicability and educative value. Reference is made to formal qualities for critique and strategic capability of alternative pedagogy for generation of forms. Examples provided show how simple rule sets develop into complex derivational sequences that challenge traditional strategies for computer imaging. The paper demonstrates the value of a sense of grammars for novice art and design practitioners by using first hand examples of experimental work at the South Australian School of Art, University of South Australia. For novice artists and designers, grammars in conjunction with reflective practice is offered as a useful mind set that supports an interest in actively defining a new kind of art. Illustrations provided show the utility of a contingent sense of grammar for pedagogy and highlights the significant role of grammar in pedagogy.
keywords Grammar, Pedagogy, Computer, Art, Design
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id e513
authors Chaikin, George
year 1998
title The Computer and the Studio
doi https://doi.org/10.52842/conf.ecaade.1998.051
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 51-54
summary The studio is the primary place of architectural education - the place where the warp of representation and the weft of technique are woven together. Architecture is taught as a domain of ideas, ideas about how and why buildings are built, about the dialectic between concept and materiality. To the architectural student, the drawing is the exemplar of the quality of work he or she will expect in the final construction process. As such, it is very important that the student appreciate the "materiality" of the work to be realized, and this is best done through the education of the whole person, of the entire cognitive mechanism, which most certainly includes the hands. We feel strongly that the student must engage in the creative process in a profoundly physical way, must learn the art and joy of making things, and only then can she or he appreciate the representational abstraction offered by the computer.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:55

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0a31
authors Johnson, Scott
year 1998
title Toward Making the Language of CAAD Match the Language of Architecture: A Protean Elements Approach
doi https://doi.org/10.52842/conf.ecaade.1998.093
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 93-100
summary Both in education and in practice, architecture is experiencing a division between designers and "CAD specialists." One reason for the division may be the inherent division between design concepts and CAD concepts. In a very real sense, computer use and design utilize different languages. Becoming an expert in the "craft" of CAD means having to learn to recognize and manipulate a different set of conceptual elements than is used in design. The set of concepts we use affects our thought and behavior incredibly deeply, and translation from one set of concepts to another has significant cognitive cost. This paper discusses the mismatch between architectural and CAD concepts, and proposes protean elements as a solution to the problem. Protean elements are CAD system elements which correspond to architectural elements and have attributes appropriate for the elements they represent. They can be gradually refined in a top-down manner, without demands for certain pieces of missing data, or requirements for "correctness." The goal is to help CAD systems come closer to speaking the same language as architects. A test implementation of a system based on protean elements is currently underway, and aspects of this implementation are discussed.
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/02johnson/index.htm
last changed 2022/06/07 07:52

_id 170f
authors Mora Padrón, Víctor Manuel
year 1999
title Integration and Application of Technologies CAD in a Regional Reality - Methodological and Formative Experience in Industrial Design and Products Development
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 295-297
summary The experience to present is begun and developed during the academic year 1998, together to the course of IV pupils level of the Industrial Design career in the Universidad del Bío-Bío, labor that I have continued assuming during the present year, with a new youths generation. We have accomplished our academic work taking as original of study and base, the industrial and economic situation of the VIII Region, context in the one which we outline and we commit our needs formative as well as methodological to the teaching of the discipline of the Industrial Design. Consequently, we have defined a high-priority factor among pupils and teachers to reach the objectives and activities program of the course, the one which envisages first of all a commitment of attitude and integrative reflection among our academic activity and the territorial human context in the one which we inhabit. In Chile the activity of the industrial designer, his knowledge and by so much his capacity of producing innovation, it has been something practically unknown in the industrial productive area. However, the current national development challenges and the search by widening our markets, they have created and established a conscience of the fact that the Chilean industrial product must have a modern and effective competitiveness if wants be made participates in segments of the international marketing. It is in this new vision where the design provides in decisive form to consider and add a commercial and cultural value in our products. To the university corresponds the role of transmitting the knowledge generated in his classrooms toward the society, for thus to promote a development in the widest sense of the word. Under this prism the small and median regional industry in their various areas, have not integrated in the national arrangement in what concerns to the design and development of new and integral products. The design and the innovation as motor concept for a competitiveness and permanency in new markets, it has not entered yet in the entrepreneurial culture. If we want to save this situation, it is necessary that the regional entrepreneur knows the importance of the Design with new models development and examples of application, through concrete cases and with demands, that serve of base to demonstrate that the alliance among Designer and Industry, opens new perspectives of growth upon offering innovation and value added factors as new competitiveness tools. Today the communication and the managing of the information is a strategic weapon, to the moment of making changes in a social dynamics, so much at local level as global. It is with this look that our efforts and objective are centered in forming to our pupils with an integration speech and direct application toward the industrial community of our region, using the communication and the technological information as a tool validates and effective to solve the receipt in the visualization of our projects, designs and solutions of products. As complement to the development of the proposed topic will be exhibited a series of projects accomplished by the pupils for some regional industries, in which the three dimensional modeling and the use of programs vectoriales demonstrate the efficiency of communication and comprehension of the proposals, its complexity and constructive possibilities.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 3
authors Andia, Alfredo
year 1998
title Computadoras y Arquitectura en la Era Digital (Computers and Architecture in the Digital Era)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 22-31
summary It seems that when architects think, and talk about computers, they only reflect on very narrow images of the phenomenon. Architects think that the impact of computers in their profession is only related to how PCs, CAD/CAM, networks, software, peripherals, can improve the way they work today. Architects, by enlarge, are unable to reflect beyond the screen of their computers and the wall of their offices when it comes to recognize the real consequences resulting from the new technological advances. In this paper we argue that we should think differently. We must recognize that computers are having much more profound impact on the profession. Computers - the technology of the fantastic, par excellence - are changing the city! They are fundamentally transforming the way we use space, and buildings! Computers are beginning to create new kinds of urban cultures and infrastructures. Building types such as offices, banks, retail spaces, and museums are being transformed into virtual workplaces, telecommuting centers, networks of automated teller machines, home banking, smart stores and multimedia experiences. Computers are transforming the concept of working, the concept of banking, the concept of shopping, etc. In the end, something fundamental about the architecture of these activities.
series SIGRADI
email
last changed 2016/03/10 09:47

_id bb72
authors Bourdot, P., Krus, M., Gherbi, R.
year 1998
title Cooperation Between Reactive 3D Objects and a Multimodal X Window Kernel for CAD
source Bunt, H., Beun, R.J., Borghuis, T. (Eds.). Multimodal Human-Computer Communication : Systems, Techniques, and Experiments. Berlin : Springer
summary From the early steps of sketching to final engineering, a frequent and very important activity in designing objects is to perform graphical and spatial simulations to solve the constraints on the objects which are being designed. But when we analyse work situations involving the use of CAD systems, it is today an acknowledged fact that these tools are not helpful to perform these types of simulations. While knowledge modeling based on form feature concepts already offers some possibilities for attaching behaviour to objects, the simulation activity requires in addition a `real time' and `intelligent' management of the interactions between the 3D virtual objects and the CAD user. Our general purpose is to study how future CAD systems could be improved to achieve the simulation steps of object design. In this context we present some issues concerning the cooperation between a model of reactive 3D objects and a multimodal X Window kernel. We have developed a prototype of a system where objects with reactive behaviour can be built, and with which the user can interact with a combination of graphical actions and vocal commands. This prototype is used to evaluate the feasability and the usefulness of the integration of such techniques in futur applications that would be used by object designers in a real working context. We describe the current state of this system and the planned improvements.
series other
last changed 2003/11/21 15:16

_id fb22
authors Chien, Sheng-Fen
year 1998
title Supporting information navigation in generative design systems
source Camegie Mellon University, School of Architecture
summary Generative design systems make it easier for designers to generate and explore design altematives, but the amount of information generated during a design session can become very large. Intelligent navigation aids are needed to enable designers to access the information with ease. Such aids may improve the usability of generative design systems and encourage their use in architectural practice. This dissertation presents a comprehensive approach to support navigation in generative design systems. This approach takes account of studies related to human spatial cognition, wayfinding in physical environments, and information navigation in electronic media. It contains a general model of design space, basic navigation operations, and principles for designing navigation support. The design space model describes how the space may grow and evolve along predictable dimensions. The basic operations facilitate navigation activities in this multi-dimensional design space. The design principles aim at guiding system developers in creating navigation utilities tailored to the needs of individual design systems. This approach is validated through prototype implementations and limited pilot usability studies. The validity of the design space model and basic navigation operations is examined through the development of a design space navigation framework that encapsulates the model and operations in a software environment and provides the infrastructure and mechanisms for supporting navigation. Three prototype navigation tools are implemented using this framework. These tools are subjected to usability studies. The studies show that these tools are easy to leam and are efficient in assisting designers locating desired information. In summary, it can be demonstrated that through the prototype implementations and usability studies, this approach offers sufficient support for the design and implementation of navigation aids in a generative design system. The research effort is a pioneer study on navigation support in generative design systems. It demonstrates why navigation support is necessary; how to provide the support; and what types of user interaction it can offer. This research contributes to information navigation studies not only in the specific domain of generative design system research, but also in the general field of human-computer interaction.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ga9811
id ga9811
authors Feuerstein, Penny L.
year 1998
title Collage, Technology, and Creative Process
source International Conference on Generative Art
summary Since the turn of the twentieth century artists have been using collage to suggest new realities and changing concepts of time. Appropriation and simulation can be found in the earliest recycled scraps in Cubist collages. Picasso and Braque liberated the art world with cubism, which integrated all planes and surfaces of the artists' subjects and combined them into a new, radical form. The computer is a natural extension of their work on collage. The identifying characteristics of the computer are integration, simultaneity and evolution which are inherent in collage. Further, the computer is about "converting information". There is something very facinating about scanning an object into the computer, creating a texture brush and drawing with the object's texture. It is as if the computer not only integrates information but different levels of awareness as well. In the act of converting the object from atoms to bits the object is portrayed at the same conscious level as the spiritual act of drawing. The speed and malleability of transforming an image on the computer can be compared to the speed and malleability of thought processes of the mind. David Salle said, "one of the impulses in new art is the desire to be a mutant, whether it involves artificial intelligence, gender or robotic parts. It is about the desire to get outside the self and the desire to trandscend one's place." I use the computer to transcend, to work in different levels of awareness at the same time - the spiritual and the physical. In the creative process of working with computer, many new images are generated from previous ones. An image can be processed in unlimited ways without degradation of information. There is no concept of original and copy. The computer alters the image and changes it back to its original in seconds. Each image is not a fixed object in time, but the result of dynamic aspects which are acquired from previous works and each new moment. In this way, using the computer to assist the mind in the creative processes of making art mirrors the changing concepts of time, space, and reality that have evolved as the twentieth century has progressed. Nineteenth-century concepts of the monolithic truth have been replaced with dualism and pluralism. In other words, the objective world independent of the observer, that assumes the mind is separate from the body, has been replaced with the mind and body as inseparable, connected to the objective world through our perception and awareness. Marshall Mcluhan said, "All media as extensions of ourselves serve to provide new transforming vision and awareness." The computer can bring such complexities and at the same time be very calming because it can be ultrafocused, promoting a higher level of awareness where life can be experienced more vividly. Nicholas Negroponte pointed out that "we are passing into a post information age, often having an audience of just one." By using the computer to juxtapose disparate elements, I create an impossible coherence, a hodgepodge of imagery not wholly illusory. Interestingly, what separates the elements also joins them. Clement Greenberg states that "the collage medium has played a pivotal role in twentieth century painting and sculpture"(1) Perspective, developed by the renaissance archetect Alberti, echoed the optically perceived world as reality was replaced with Cubism. Cubism brought about the destruction of the illusionist means and effects that had characterized Western painting since the fifteenth century.(2) Clement Greenberg describes the way in which physical and spiritual realities are combined in cubist collages. "By pasting a piece of newspaper lettering to the canvas one called attention to the physical reality of the work of art and made that reality the same as the art."(3) Before I discuss some of the concepts that relate collage to working with computer, I would like to define some of the theories behind them. The French word collage means pasting, or gluing. Today the concept may include all forms of composite art and processes of photomontage and assemblage. In the Foreword on Katherine Hoffman's book on Collage Kim Levin writes: "This technique - which takes bits and pieces out of context to patch them into new contexts keeps changeng, adapting to various styles and concerns. And it's perfectly apt that interpretations of collage have varied according to the intellectual inquiries of the time. From our vantage point near the end of the century we can now begin to see that collage has all along carried postmodern genes."(4) Computer, on the other hand is not another medium. It is a visual tool that may be used in the creative process. Patrick D. Prince's views are," Computer art is not concrete. There is no artifact in digital art. The images exist in the computer's memory and can be viewed on a monitor: they are pure visual information."(5) In this way it relates more to conceptual art such as performance art. Timothy Binkley explains that,"I believe we will find the concept of the computer as a medium to be more misleading than useful. Computer art will be better understood and more readily accepted by a skeptical artworld if we acknowledge how different it is from traditional tools. The computer is an extension of the mind, not of the hand or eye,and ,unlike cinema or photography, it does not simply add a new medium to the artist's repertoire, based on a new technology.(6) Conceptual art marked a watershed between the progress of modern art and the pluralism of postmodernism(7) " Once the art is comes out of the computer, it can take a variety of forms or be used with many different media. The artist does not have to write his/her own program to be creative with the computer. The work may have the thumbprint of a specific program, but the creative possibilities are up to the artist. Computer artist John Pearson feels that,"One cannot overlook the fact that no matter how technically interesting the artwork is it has to withstand analysis. Only the creative imagination of the artist, cultivated from a solid conceptual base and tempered by a sophisticsated visual sensitivity, can develop and resolve the problems of art."(8) The artist has to be even more focused and selective by using the computer in the creative process because of the multitude of options it creates and its generative qualities.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 203b
authors Jabi, Wassim M.
year 1998
title The Role of Artifacts in Collaborative Design
doi https://doi.org/10.52842/conf.caadria.1998.271
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 271-280
summary With the proliferation of digital technology, a new category of design artifacts, usually described with the term virtual, has emerged. Virtual artifacts have gained further prominence due to the advances made in collaboration software and networking technologies. These technologies have made it easier to communicate design intentions through the transfer and sharing of virtual rather than physical artifacts. This becomes particularly true in the case of long-distance or international collaborative efforts. This paper compares the two major categories of artifacts – the physical and the computer-based – and places them in relationship to an observed collaborative design process. In order to get at their specific roles in collaboration, two case studies were conducted in which designers in academic and professional settings were observed using a methodology which focused on participation in the everydayness of the designer as well as casual discussions, collection of artifacts, note-taking, and detailed descriptions of insightful events. The collected artifacts were then categorized according to the setting in which they were created and the setting in which they were intended to be used. These two attributes could have one of two values, private or public, which yield a matrix of four possible categories. It was observed that artifacts belonging in the same quadrant shared common qualities such as parsimony, completeness, and ambiguity. This paper finds that distinguishing between physical and virtual artifacts according to their material and imagined attributes is neither accurate nor useful. This research illustrates how virtual artifacts can obtain the qualities of their physical counterparts and vice versa. It also demonstrates how a new meta-artifact can emerge from the inclusion and unification of its material and imagined components. In conclusion, the paper calls for a seamless continuity in the representation and management of physical and virtual artifacts as a prerequisite to the success of: (1) computer-supported collaborative design processes, (2) academic instruction dealing with making and artifact building, and (3) executive policies in architectural practice addressing the management of architectural documents.
keywords Collaborative Design Process
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:50

_id 10f9
authors Kvan, Th., West, R. and Vera, A.
year 1998
title Tools and Channels of Communication
source International Journal of Virtual Reality, 3:3, 1998, pp. 21-33
summary This paper proposes a methodology to evaluate the effects of computer-mediated communication on collaboratively solving design problems. When setting up a virtual design community; choices must be made between a variety of tools; choices dictated by budget; bandwidth; ability and availability. How do you choose between the tools; which is useful and how will each affect the outcome of the design exchanges you plan? A commonly used method is to analyze the work done and to identify tools which support this type of work. In general; research on the effects of computer-mediation on collaborative work has concentrated mainly on social-psychological factors such as deindividuation and attitude polarization; and used qualitative methods. In contrast; we propose to examine the process of collaboration itself; focusing on separating those component processes which primarily involve individual work from those that involve genuine interaction. Extending the cognitive metaphor of the brain as a computer; we view collaboration in terms of a network process; and examine issues of control; coordination; and delegation to separate sub-processors. Through this methodology we attempt to separate the individual problem-solving component from the larger process of collaboration.
keywords Expertise; Collaboration; Novice
series journal paper
email
last changed 2002/11/15 18:29

_id 1c6b
authors Mase, K., Sumi, Y. and Nishimoto, K.
year 1998
title Informal conversation environment for collaborative concept formation
source Community Computing: Collaboration over Global Information Networks, eds. T. Ishida. John Wiley & Sons
summary This chapter focuses on facilitating the early stages of community formation. We spend a great deal of time every day in informal conversations, which are very important for the early stages of forming various kinds of communities. People engaged in conversation will not only share information, but also try to listen to and understand others, and as well as work together to find common objectives. In the early stages of forming the communities, agreement on a common concept through such a process is an essential element in the bonding of the group. Conversation environments on networked computers, e.g., via e-mail, online chat, and news groups, eliminate the spatial and temporal constraints of forming these communities but allow for the reuse of accumulated dialogs from previous interactions. Moreover, a computerized environment can directly support information sharing and mutual understanding. Conventional computerized conversation support systems, however, often force their users to follow some predetermined conversation model, prepared by designers beforehand. Thus, it can be difficult to apply these systems to informal conversations. We are developing a system called AIDE (Augmented Informative Discussion Environment) that facilitates our informal daily conversations. It does not require users to provide additional information in designated forms during a conversation, but rather it provides functionality to enhance and support the informal conversation. AIDE features three main functions: the discussion viewer, the conversationalist agent and the personal desktop. Using these functions, the participants can attain mutual understanding, crystallize ideas, and share common concepts. AIDE is considered to be not only a tool for supporting informal conversation but also useful Communityware, especially for facilitating the initial stage of community formation. This chapter first discusses a model of the group thinking process and applies it to community formation. Then, the structure of the AIDE system is presented using a few example conversations to illustrate how the AIDE system can support communication between people. AIDE displays potential as communityware.
series other
last changed 2003/04/23 15:14

_id ddss9842
id ddss9842
authors Mattsson, Helena
year 1998
title Working with unpredictability
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The paper deals with notions of complexity in art and architecture. On the basis of a recent sculptural work by Richard Serra, Torqued Ellipses (1997), the notion of complexity is investigated in terms of how it situates the viewer, and affects our sense of space and time. Serra’s work is analyzed in terms of the artist’s working method, the production of the work, and finally the ”external relations” which connect it to the viewer and the context. In each of these steps, the notions of complexity and unpredictability are shown to have a formative role. The relations between space and time, object and context, are redefined in Serra’s work, which also gives it great importance for architectural theory and practice.
series DDSS
last changed 2003/08/07 16:36

_id 602d
authors Oxman, R., Shaphir, O. and Yukla, M.
year 1998
title Beyond Sketching : Visual Reasoning Through Re-Representation in Cognitive Design Media
doi https://doi.org/10.52842/conf.caadria.1998.337
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 337-346
summary Our research approach which is termed Cognitive Design Media (CDM) demonstrates how the cognitive phenomena of design can be supported in computerized environments. Our current work on the ‘sketch’ project is introduced presented and illustrated. Sketching in design is considered to be one of the significant cognitive phenomena which supports exploration through re-representation in design. Until now, only the medium of hand drawing and sketching has been considered to support these processes. Rather than automating the traditional hand-made sketch, or interpreting sketches in a computer system, we are attempting to employ the computer to support one of the cognitive mechanism of re-representation which underlie the sketch activity.
keywords esign Creativity, Exploration, Design Cognition, Sketch Design, Re-Representation, Cognitive Design Media
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 08:00

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
doi https://doi.org/10.52842/conf.ecaade.2001.192
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id ac3a
authors Roberts, Andrew
year 1998
title Teaching of Transferable Skills in Architectural Education - The Quartet Project
doi https://doi.org/10.52842/conf.ecaade.1998.218
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 218-223
summary The quartet project is a four-week programme undertaken by all first year B.Sc Architecture students at the Welsh School of Architecture. It takes place early in the first semester and is designed to encourage students to develop a series of transferable skills. The cohort is divided into four groups, and the groups rotate around four different activities on a weekly basis. One of these activities is CAD/IT and aims to equip students with the necessary understanding of the potential and limitations of using computers as part of their studies, with emphasis on the creative use of the technology. Throughout the week links with the other three activities are heavily stressed and students use computers within all four activities to some extent. Using examples of students' work from the past two years, this paper aims to assess the CAD/IT element of the project, and how it connects with the other activities. It then looks at how the skills developed during the week are utilised by the students during the remainder of their time in the school.
series eCAADe
email
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/43roberts/index.htm
last changed 2022/06/07 07:56

_id ga9801
id ga9801
authors Soddu, Celestino
year 1998
title Argenia, a Natural Generative Design
source International Conference on Generative Art
summary Leon Battista Alberti defines the Beauty of Architecture "a concert of all the parts together, performed with proportion and logic in something in which it is possible to find again each event, in a modality that will not allow the inserting, extracting out or changing anything without decreasing its Beauty". With generative art we can approach, directly, this complex paradigm of proportions and logic, and we can directly design the Beauty, or better our idea of beauty, before the realization of each single possible artificial event. This is the heart of generative approach. The Generative Art work for the beauty, in the sense of the humanistic approach of Renaissance, because the generative code, which is the project of generative design, is the real structure of the idea. It defines how to concert all the parts and the dynamic relationship among these parts in the evolution of complexity. The generative project defines which is the law of proportion and which logic the dynamic evolution will follow. All the events that this code can generate will be, in humanistic sense, beautiful, or, if we prefer, will belong and represent our Idea of world. And more. The generative art produces events that are unique and complex. The uniqueness and complexity are strongly related one each other. As in Nature, each event is generated through an artificial life, which, as in the natural life, produces uniqueness, identity and complexity during a identifiable time. This complexity is a natural-like complexity. We can recognise, in the artificial ware we produce through this generative approach, the harmony and the beauty of the natural-like complexity that refers to the Humanistic approach of Renaissance: Man, Geometry, and Nature as references for "the harmony which is not thought as an individual caprice but as conscious reasoning." (L.B.Alberti, De re aedificatoria).
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id bc34
authors Valkenburg, R.C.
year 1998
title Shared understanding as a condition for team design
source Automation in Construction 7 (2-3) (1998) pp. 111-121
summary The growing importance of teams in design introduces challenges and complications for designers to work effectively. In team work we can make a difference between the individual level and the team level. The individual designers have to tune their personal understandings about the design content to achieve a shared understanding. In this paper we will build a conceptual theoretical framework in which we try to capture the essence of designing within a team. We will show how the team of the Delft workshop 'Analysing Design Activity' associates with this framework. With the outcome of this explorative analysis we will create a basis for further research on this subject.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_508855 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002