CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 467

_id 1c6b
authors Mase, K., Sumi, Y. and Nishimoto, K.
year 1998
title Informal conversation environment for collaborative concept formation
source Community Computing: Collaboration over Global Information Networks, eds. T. Ishida. John Wiley & Sons
summary This chapter focuses on facilitating the early stages of community formation. We spend a great deal of time every day in informal conversations, which are very important for the early stages of forming various kinds of communities. People engaged in conversation will not only share information, but also try to listen to and understand others, and as well as work together to find common objectives. In the early stages of forming the communities, agreement on a common concept through such a process is an essential element in the bonding of the group. Conversation environments on networked computers, e.g., via e-mail, online chat, and news groups, eliminate the spatial and temporal constraints of forming these communities but allow for the reuse of accumulated dialogs from previous interactions. Moreover, a computerized environment can directly support information sharing and mutual understanding. Conventional computerized conversation support systems, however, often force their users to follow some predetermined conversation model, prepared by designers beforehand. Thus, it can be difficult to apply these systems to informal conversations. We are developing a system called AIDE (Augmented Informative Discussion Environment) that facilitates our informal daily conversations. It does not require users to provide additional information in designated forms during a conversation, but rather it provides functionality to enhance and support the informal conversation. AIDE features three main functions: the discussion viewer, the conversationalist agent and the personal desktop. Using these functions, the participants can attain mutual understanding, crystallize ideas, and share common concepts. AIDE is considered to be not only a tool for supporting informal conversation but also useful Communityware, especially for facilitating the initial stage of community formation. This chapter first discusses a model of the group thinking process and applies it to community formation. Then, the structure of the AIDE system is presented using a few example conversations to illustrate how the AIDE system can support communication between people. AIDE displays potential as communityware.
series other
last changed 2003/04/23 15:14

_id ascaad2006_paper19
id ascaad2006_paper19
authors Arjun, G. and J. Plume
year 2006
title Collaborative Architectural Design as a reflective Conversation: an agent facilitated system to support collaborative conceptual design
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary In this paper, definitions of collaborative design are discussed and understood in terms of a designer’s cognitive collaborations to explore his/her experiential memory for remote idea associations. Based on Schon’s reflective practice theory, Valkenburg and Dorst’s (1998) description of collaborative team designing is adopted as a model for a proposed design conversation system. The design conversation system is aimed at triggering the experiential memory of the designer by associating significant ideas from different design domains to provide different perspectives of a design situation. The paper describes a proposed framework for the design conversation system incorporating computational agents in a blackboard architecture environment.
series ASCAAD
email
last changed 2007/04/08 19:47

_id maver_089
id maver_089
authors Chen, Y., Fram, I. and Maver, T.W.
year 1998
title A Virtual Studio Environment for Design Integration
source Advances in Engineering Software, vol 29, No 10, 787-800
summary In this paper the authors attempt to stress the social dimension of design and the role of explicit support for human-level interaction during design systems integration. A human-centred approach is proposed by taking design integration as the collaborative use of design artefacts, and a virtual studio environment (VSE) framework is presented as an integration vehicle to link the social and technical dimensions. A VSE consists of two subsystems: the VSE base system and the domain resources. While common generic facilities for human-human interaction are embedded within the VSE base system, the domain-specific resources are loosely coupled into VSE via resource agents. A VSE prototype for the domain of building design is described, and a demonstration of the use of the VSE prototype is presented. This is then followed by some discussion on related research and further work.
keywords Design Integration, Collaborative Design, Human-Human Interaction, Virtual Design Studio, Building Design
series journal paper
email
last changed 2003/09/03 13:23

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 3d2f
authors Kalay, Y.E., Khemlani, L. and JinWon, C.
year 1998
title An integrated model to support distributed collaborative design of buildings
source Automation in Construction 7 (2-3) (1998) pp. 177-188
summary The process of designing, constructing and managing buildings is fragmented, and involves many participants interacting in complex ways over a prolonged period of time. Currently, sequential communication among the participants is the norm. Consequently, while individual parts of the project may be optimized, the optimality of the overall project suffers. It is our view that the quality of the overall project can be significantly improved (in terms of time, money, and quality of design) if there was a tighter, non-sequential collaboration among the participants. Additional improvements will accrue if the participants were provided with discipline-specific design and evaluation tools, which assist them in performing their tasks. This paper describes the development of an integrated design environment, which is intended to facilitate such collaboration. It comprises a semantically-rich, object-oriented database, which forms the basis for shared design decisions. The database is augmented by knowledge-based query and update operators. Geometric and semantic editing tools round out the environment.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 12f5
authors Nam, Tek-Jin
year 1998
title An Investigation of Multi-user Design Tools for Collaborative 3-D Modeling Doctoral Colloquium
source Proceedings of ACM CSCW'98 Conference on Computer-Supported Cooperative Work 1998 p.420
summary The objective of this research is to help designers working in teams by providing an improved collaborative design environment. The focus is on the investigation into specific issues and requirements for the development of multi-user CAD systems for collaborative 3-D modeling. By examining means for incorporating shared design workspace into conventional design workspace, we propose new mechanisms to transform existing CAD tools into collaboration-aware systems. From an initial experimental study of the team design process and a series of prototype development of collaborative CAD systems, a theoretical framework has been proposed and applied to the new collaboration-aware design systems. The result of the research will lead to the new generation of design tools to support team design tasks improving efficiency and effectiveness of team working.
series other
last changed 2002/07/07 16:01

_id e184
authors Popov, V., Popova, L. and De Paoli, G.
year 1998
title Towards an Object-Oriented Language for the Declarative Design of Scenes
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 316-353
doi https://doi.org/10.52842/conf.acadia.1998.316
summary We propose a prototype “kernel” of an object-oriented language, SOML (Scene Objects Modeling Language), intended to assist in the declarative design of scenes in image synthesis. This language is an attempt to provide the designer with a tool to facilitate the rapid prototyping of 3D scenes. It can also serve as a tool for knowledge acquisition and representation , and for communication and exchange of data with other tools in a design environment. Advantages offered by the implementation of SOML are: (a) from user’s viewpoint: the possibility of declarative description of the initial concept associated with the target scene in terms of properties and constraint vocabulary, the possibility of quantitative and qualitative reasoning on these properties, the modification of the intermediate solutions to different levels of detail, the utilisation of previous solutions; and (b) from the implementation viewpoint: the structuring of the properties and methods in the form of domain knowledge, the optimal solution generation according to heuristic causal-probabilistic criteria, the transformation of the semantic concept description of the scene in generic entry code for a geometrical CSG modeler or for rendering and visualization software, the integration of functionality for parameter generation and modification, the compilation of a scene from components of other final scenes and operations of geometrical transformations acting on groups of scenes. We present the architecture of the object-based implantation of the language and its interpreter, in the unified notation formalism UML. The utilization of the SOML language is illustrated by some examples.
series ACADIA
email
last changed 2022/06/07 08:00

_id b548
authors Rosenman, M.A. and Gero, J.S.
year 1998
title CAD modelling in multidisciplinary design domains
source I. Smith (Ed.), Artificial Intelligence in Structural Engineering, Springer, Berlin, pp.335-347
summary In a multidisciplinary design environment, such as the architecture, engineering and construction (AEC) domain, the various designers will have their own views, concepts and representations of design objects, making communication in a CAD environment a complex task. This paper demonstrates that by taking into consideration the concepts of function and purpose such multiple views and representations can be accomodated. The representation of the functional properties of design objects and their purpose is the underlying basis for the formation of different representations and the coordination of these representations. The paper puts forward definitions for function and purpose which allow for the representation of these properties of a design object and for interdisciplinary communication and integration in a CAD environment.
keywords Multiple Views, Representation
series other
email
last changed 2003/04/06 09:02

_id 101caadria2004
id 101caadria2004
authors Tuzmen, A.
year 2004
title REQUIREMENTS-BASED METHDOLOGY FOR THE EVALUATION OF THE COMPUTER SUPPORTED COLLABORATION ENVIRONMENTS
source CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004, pp. 19-34
doi https://doi.org/10.52842/conf.caadria.2004.019
summary Literature consists of research identifying the benefits and pitfalls of the use of computer supported collaboration tools and environments to support collaborating design teams (Kvan, 1998; Maher et al, 2000). However, we don’t find enough information in literature about the methodology needed for evaluating the performance of a collaboration environment in meeting the needs and expectations of the collaborating design teams. There are no uniformly accepted methodologies or metrics for evaluating the performance of a design collaboration environment. This paper introduces a requirements-based methodology for evaluating the effectiveness of design collaboration environments. The requirements-based methodology was developed and implemented during a process which involved: a) the use of various synchronous and asynchronous collaboration environments, and b) comparison of those against each other each other by an evaluation methodology. The evaluation methodology proposed in this study is experimented during a course entitled Computer Supported Collaborative Design at the University of Sydney.
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:58

_id 660f
authors Woo, Sungho and Sasada, Tsuyoshi
year 1998
title Shared Virtual Space for Architectural Education
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1989, pp. 291-298
doi https://doi.org/10.52842/conf.caadria.1998.291
summary Our research in recent years has included the subject of providing co-operative work space in the field of architectural design. We propose raising the quality of architectural design by extending the physical space of the architectural laboratory into the virtual space of the network (i.e. Internet). In this paper, this extension is called Multi-user work space. The aim of this paper is to provide Multi-user work space with the feature of synchronous+asynchronous, bidirection and peer-to-peer+client-server, and to popularize architectural design by providing Multi-user work space with a seamless environment in time and space.
keywords Collaborative Design, Virtual Space, Synchronous Communication
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:57

_id cf9d
authors Yeung, C., Cheung, L., Yen, J. and Cheng, C.
year 1998
title Virtual Classroom for Architecture
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 93-102
doi https://doi.org/10.52842/conf.caadria.1998.093
summary Over the past few years, we have seen that the evolution of the Internet and World Wide Web technologies have significantly enhanced the global communication and collaboration. People, no matter where they are, are virtually getting closer and closer. The barriers that came from time and distance have been partially removed by the use of such technologies. Internet and WWW are not just technology, they are an environment or space. With such breakthrough in technologies, a new paradigm in education is there. The education very differently from what we have now. This paper presents an Internet-based environment to support teaching and learning in architecture education. We will discuss the design concept and how to integrate the technology and knowledge-based techniques to implement the learning environment for architecture students. Architecture is a very specific discipline which consists of the knowledge from arts, sciences, engineering, and more. One of the focuses in architecture education is to teach how to express and communicate design ideas with the multimedia or other technologies, such as, virtual reality (VR). A case study presented in this paper is about how to deliver and present the ancient Chinese temples and its bracket set systems from the server to the browsers to support distance teaching. That is, students and teachers may not be in the same location, but they are able to watch the same objects and to exchange ideas. We will discuss how to use multimedia technologies to illustrate how a temple and its bracket set differ from dynasties to dynasties and introduce its basic properties to the viewers. Moreover, we will discuss how we organize and handle 3-dimensional objects with such system. Many people are still arguing about whether Internet-based teaching or a real classroom setting is better. We are not implying that Internet-based teaching is superior or predicting that it will dominate the teaching in the near future. However, we strongly believe that it is just another alternative to express and represent architectural thinking to over some of the barriers that come from time and distance. We believe, that it is always true, that the Internet-based teaching may provide both teachers and learners greater flexibility and to support more International collaboration. That is, regardless where the students or teachers are, they can always participate in learning or teaching and make teaching and learning much more rich and interesting.
keywords Virtual Classroom
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:57

_id ddss9865
id ddss9865
authors Yildirim, Ayca Tuzmen
year 1998
title A Conceptual Model of a Computer Mediated Asynchronous Collaborative Design Environment
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Architectural design practice is a collective work of different levels of expertise. Collaborative design relies on seamless meshing of specialists with different levels of expertise, skills and views. Research oncollaborative design suggests various methodologies for supporting synchronous or asynchronous communicative practices of designers in reviewing and analyzing design decisions at different stages of thedesign process. However, they do not address the provision of an action platform that would enable collaborative group decision making in architectural design. There are four requirements for this platform:1) sharing of design decisions among designers, 2) sharing of design rationale among designers, 3) detecting conflicts among design decisions, and 4) sharing of designers responses to design decisions. Thispaper presents a conceptual model of an asynchronous collaborative design environment that implements methodologies for addressing these requirements.
series DDSS
type normal paper
email
last changed 2008/06/12 21:07

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 99f2
authors Gero, J.S.
year 1998
title Concept formation in design
source Knowledge-Based Systems 10(7-8): 429-435
summary This paper presents a computationally tractable view on where simple design concepts come from by proposing a paradigm for the formation of design concepts based on the emergence of patterns in the representation of designs. It is suggested that these design patterns form the basis of concepts. These design patterns once learned are then added to the repertoire of known patterns so that they do not need to be learned again. This approach uses the notion called the loosely-wired brain. The paper elaborates this idea primarily through implemented examples drawn from the genetic engineering of evolutionary systems and the qualitative representation of shapes and their multiple representations.
keywords Concept Formation, Pattern Emergence, Representation
series other
email
last changed 2003/04/06 09:00

_id ddss9852
id ddss9852
authors Shalaby, Tarek, Scutt, Tom and Palmer, Diane
year 1998
title The ‘Intelligent Map’ as A Decision Support System for UrbanPlanners in Nottingham Using GIS Technology
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Location is often considered as the most important factor leading to the success of public or private services. Location is the key in maximising accessibility and keeping operating cost low. A collaborative research project between ‘Nottingham University’ and the ‘Environmental ServicesDepartment of Nottingham City Council’ is developing an ‘Intelligent Map’ for identifying optimum locations for the recycling centres in the city. The object is to develop a new decision support system for urban planners, to be used as a management and analytical tool for improving locational decisionmaking. This paper discusses the technique of the Intelligent Map, and its concept. The paper includes three main sections. The first discusses the introduction of the mini-recycling centres in Nottingham, theproblems associated with their spatial distribution, and the need for a new decision support system using GIS technology. The second examines traditional techniques using GIS for identifying optimum locations and calculating catchment areas. The third explains the concept of the Intelligent Map; discussion takes the form of an initial analysis of the likely method to be applied, and then briefly outlines some of the prototyping work that is currently taking place at Nottingham.
series DDSS
last changed 2003/08/07 16:36

_id aeb8
authors Shih, Shen-Guan and Hu, Tsung-Pao
year 1998
title A Layout Generation System for Elementary Schools
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 465-472
doi https://doi.org/10.52842/conf.caadria.1998.465
summary This paper describes a layout generation system that is realized by adapting the design problem formation and design process of the well-known SAR method. The purpose is to examine the idea that some certain types of design problems can be greatly simplified by conventional design techniques such as hierarchical decomposition, zoning, module, and most importantly, the concept of “support”, which is a spatial framework that dissects the planning site into sectors and zones of various spatial characteristics.
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:59

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.1999.169
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 6433
authors Agranovich-Ponomarieva, E. and Litvinova, A.
year 1998
title The "Real Space - Cyberspace" Paradigm
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 141-145
summary In a chain of "real - perceived - imagined space" the computer reduces to a uniform model of only real and imagined space. It cannot undertake man's function or it cannot build the perception model. However, perception assumes physiological perception, psychological estimation and understanding, and emotional ho-experience. For a person the seizing of space during perception is constructing temporary spatial images and their development. The communicative relations of the person with environment are established during revealing internal and external structural communications and the interior represents the message, unwrapped in space and perceived in time. The real space is formed under influence of the sum of conceptual restrictions. The character of these restrictions depends on a super idea, a type of an initial situation, character of installations and on social-cultural stereotypes of the author. Without this stage transition to real architectural object is impossible. Result of activity of an architect at this stage becomes creation hypothetical cyberspace, with its own peculiarities and laws.
series plCAD
last changed 1999/04/08 17:16

_id ddss9802
id ddss9802
authors Akin, O., Aygen, Z., Cumming, M., Donia, M., Sen, R. and Zhang, Y.
year 1998
title Computational Specification of Building Requirements in theEarly Stages of Design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary We have been exploring computational techniques to help building designers to specify design requirements during the early stages of design. In the past, little has been accomplished in this area either in terms of innovative computational technologies or the improvement of design performance.The prospect of improving design productivity and creating a seamless process between requirements specification and formal design are our primary motivations. This research has been conducted as partof a larger project entitled SEED (Software Environment to Support Early Phases in Building Design). SEED features an open-ended modular architecture, where each module provides support for a design activity that takes place in early design stages. Each module is supported by a database to store and retrieve information, as well as a user interface to support the interaction with designers. The module described in this paper, SEED-Pro (the architectural programming module of SEED), is a workingprototype for building design requirements specification. It can be used by other modules in SEED or by design systems in other domains, such as mechanical engineering, civil engineering, industrial designand electrical engineering. Our approach to SEED-Pro is divided into two phases: core, and support functionalities. The core functionalities operate in an interactive mode relying on a case-based approach to retrieve and adapt complex specification records to the problem at hand. The supportfunctionalities include the case-base, the data-base, and the standards processing environment for building specification tasks. Our findings indicate that SEED-Pro: (1) is a tool that structures the unstructured domain of design requirements; (2) enables the integration of design requirements with the rest of the design process, (3) leads to the creation of complex case-bases and (4) enables the observation of their performance in the context of real world design problems.
series DDSS
last changed 2003/11/21 15:15

_id ddssar0203
id ddssar0203
authors Alkass, Sabah and Jrade, Ahmad
year 2002
title A Web-Based Virtual Reality Model for Preliminary Estimates of Hi-Rise Building Projects
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary Cost estimating of a construction project at its early stage is considered to be very important task since it will be used as a base to commit or otherwise not to commit funds to that project. Preparation of a reliableand realistic preliminary estimate to aid the decision makers to commit funds for a specific project is a complicated assignment. Traditional methods and operations produced unsatisfactory aid due to lack ofaccuracy especially in the pre-design stage of a project. This participates in the increase of percentage of bankruptcy in the construction industry, which has dramatically climbed up and ranked as 15 percent of thewhole bankruptcies claimed in Canada (Statistic Canada 1998). This paper presents a methodology for developing and a Web-based model to automate preliminary cost estimates for hi-rise buildings. This is achieved by integrating a database with design drawings in a Virtual Reality (VR) environment. The model will automatically generate preliminary estimates after modifying a 3D CAD drawing. It provides the user the option to visualize and simulate the drawing and its cost data through VR environment. Having done that, it will allow owners, architects and cost engineers to view a constructed building project, change its geometric objects and shapes, and accordingly generate a new conceptual cost estimate.
series DDSS
last changed 2003/11/21 15:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 23HOMELOGIN (you are user _anon_764830 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002