CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 553

_id c304
authors Barber, T.and Hanna, R.
year 1998
title Appraisal of Design Studio Methodologies
doi https://doi.org/10.52842/conf.caadria.1998.021
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 21-30
summary This paper investigates the relationship between different design approaches and their effectiveness in the formulation of design concepts. This inquiry will focus on the computer as the sole design and developmental tool. The research employs a short design programme, a small building with a given urban site, as its investigative vehicle. Nineteen second year students of the Mackintosh School of Architecture were monitored and their design progress evaluated. They were split into two groups: one used CAD and AEC as the only drawing and modelling tool, tutorial and review, and another used conventional tools of drawing and model making (mixed media). Structured interviews and personal observations were used as a means for data collection. Questionnaires were administered to students and their response was analysed using the statistical programme SPSS (Statistical Package for the Social Sciences). The Mann-Whitney test was used to test the Null Hypothesis that different design approaches will not produce different design outcomes. Correlation, Regression and the X2 test of independence were also employed to screen data and identify patterns of relationships.

series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id caadria2006_617
id caadria2006_617
authors CHING-CHIEN LIN
year 2006
title A GREATER SENSE OF PRESENCE: SPATIAL INTERFACE IN VR CAVE
doi https://doi.org/10.52842/conf.caadria.2006.x.j1m
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 617-619
summary Virtual environments are three–dimensional spaces presented visually. They combine the user’s experience and sense of 'being there' in the virtual environment. Presence is a central element of virtual reality that it is seen as a part of its definition (Steuer, 1992). Direct interactions between participants and the virtual environment generate a more enhanced sense of immersion, thus making the participants feels they are part of that environment (Witmer & Singer, 1998).
series CAADRIA
email
last changed 2022/06/07 07:50

_id 6fdf
authors Emdanat, Samir S. and Vakalo, Emmanuel-G.
year 1998
title An Ontology for Conceptual Design in Architecture
doi https://doi.org/10.52842/conf.caadria.1998.425
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 425-434
summary This paper presents ongoing efforts to formulate an ontology for conceptual design on the basis of shape algebras. The ontology includes definitions for spatial elements such as points, lines, planes, and volumes, as well as, non-spatial elements such as material properties. The ontology is intended to facilitate sharing knowledge of shapes and their properties among independent design agents. This paper describes the formulation of the ontology and discusses some of its underlying classes, axioms, and relations.
keywords Ontologies, Knowledge Representation
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:56

_id 8a40
authors Kolarevic, Branko
year 1998
title A Pedagogical Model for an Introductory CAAD Course
doi https://doi.org/10.52842/conf.caadria.1998.039
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 39-46
summary This paper presents a pedagogical model developed for an introductory CAAD course in the first year of architecture studies. The model is based on a set of exercises that emphasize the use of electronic media for the collection of information, its distribution, presentation, transformation, interpretation, and abstraction. The primary goal was to enable students to creatively apply digital media in their design work by simultaneously introducing them to a wide range of applications, and by enabling them to engage in abstract exploration of shapes, forms, and images.
keywords Electronic Design Media, Pedagogy, CAAD Education
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:51

_id c5bc
authors Popova, Mina
year 1998
title Model of Design Parts and its Use to the Design Team
doi https://doi.org/10.52842/conf.caadria.1998.233
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 233-242
summary This paper discusses the impact of the choice of representation on the final result in design and construction projects. Representation is an integrated part of the design process used by architects as a communication tool to help them present a concept to their clients and other consultants. The representation choice, in addition, reflects the professional’s perception of the design process and the architectural artefact. Architects’ offices work with a wide range of problems - aesthetic and spatial issues, detailing, choice of materials, and systems design. The multiplicity of representations enriches the understanding of these issues. Today, the model-oriented approach in design is common among both architects and leading software producers for the construction industry. While STEP (Standard for the Exchange of Product Data) aims at developing very comprehensive product models, we examine the possibility of building up a small-scale model responding to the information needs of a design team. In our research work, we view a model of design parts as a suitable carrier of information allowing the designers to store data reflecting their accumulated and refined professional knowledge and experience. Besides, the team of architects can later easily retrieve information needed for future design reuse from the model. To reuse design solutions and learn from previous work is an essential part of the professional culture. The construction industry as a whole has been slow in implementing information technology to improve the work methods. Neither have architects’ offices used the full potential of this technology to structure information and rationalize the design process. The objective of this study is to examine whether information technology makes it possible to organize all the design information in an office archive. The proposed model of design parts relates to national standards and universal models for product data representation and exchange, such as STEP. Today, the construction sector is becoming increasingly aware of the potential of the model-oriented approach both to rationalize the design and construction process and offer designers new options to store, broaden and reuse professional knowledge. We have used the information modelling language EXPRESS to describe our concept.
keywords Design and Construction Process, Model-oriented Approach, Representation, Information Technology, STEP
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 08:00

_id 2623
authors Sheth, A. and Klas, W.
year 1998
title Multimedia Data Management
source New York: McGraw-Hill
summary Here is the authoritative handbook on multimedia metadata and data management. In one volume, it gathers a wealth of information from the field's leading international experts in this emerging specialty. Multimedia data-text, image, voice, and video-poses unique challenges to product developers and database professionals in midsized to giant organizations. They need to know how multimedia can be effectively stored, accessed, and integrated into applications. The key is "metadata," which acts as an umbrella for multimedia data and allows it to be modeled and managed. In this invaluable guide, well-known contributors from the U.S., Japan, and Europe examine the metadata concept, present relevant standards, and discuss its global use in video databases, speech documents, satellite and medical imaging, and other applications.
series other
last changed 2003/04/23 15:14

_id 45
authors D. I. Fernadez Prato. D. I. Beatriz Gal·n
year 1998
title El Impacto de la Informatica Sobre el Mundo de los Objetos Cotidianos (The Impact of Computing on the World's Daily Objects)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 336-341
summary The computer impact over daily objects world: methodological reflection from the Philips design team workshop "Vision of the Future".The impact of computers in the industrial design world is often limited to the condition of tool, used in the conception process, and, in a minor scale, it is shown integrating and reprocessing the objects, and the every day rituals that nourish them. The integration of microelectronics into the world of objects has been given theoric basement by those who are responsible for technological development (which we describe in this work), displaying several trends tendencies towards interactive, flexibility and, dematerialization and loss of leading role of the object by its integration in the net. The "Vision of the Future" experience, accomplished by the Philips design team, is a look, from the point of view of design, about this subject. The exploration of this new experience through the world of the objects of the future, shows us that the technologies are far away from dematerializing culture, and even threat the leading role of the object. Many of the products that are studied in Philips work-shop, are recreations of old objects but with new functional possibilities. We can see that, although technology allows rituals to be destroyed, yet they preserve themselves deflecting the logical evolution of technology. In this study, we display a methodology to generate interactive objects, following the most significant examples of the work we studied.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ga9809
id ga9809
authors Kälviäinen, Mirja
year 1998
title The ideological basis of generative expression in design
source International Conference on Generative Art
summary This paper will discuss issues concerning the design ideology supporting the use and development of generative design. This design ideology is based on the unique qualities of craft production and on the forms or ideas from nature or the natural characteristics of materials. The main ideology presented here is the ideology of the 1980´s art craft production in Finland. It is connected with the general Finnish design ideology and with the design ideology of other western countries. The ideology for these professions is based on the common background of design principles stated in 19th century England. The early principles developed through the Arts and Crafts tradition which had a great impact on design thinking in Europe and in the United States. The strong continuity of this design ideology from 19th century England to the present computerized age can be detected. The application of these design principles through different eras shows the difference in the interpretations and in the permission of natural decorative forms. The ideology of the 1980ïs art craft in Finland supports the ideas and fulfilment of generative design in many ways. The reasons often given as the basis for making generative design with computers are in very many respects the same as the ideology for art craft. In Finland there is a strong connection between art craft and design ideology. The characteristics of craft have often been seen as the basis for industrial design skills. The main themes in the ideology of the 1980´s art craft in Finland can be compared to the ideas of generative design. The main issues in which the generative approach reflects a distinctive ideological thinking are: Way of Life: The work is the communication of the maker´s inner ideas. The concrete relationship with the environment, personality, uniqueness, communication, visionary qualities, development and growth of the maker are important. The experiments serve as a media for learning. Taste and Aesthetic Education: The real love affair is created by the non living object with the help of memories and thought. At their best objects create the basis in their stability and communication for durable human relationships. People have warm relationships especially with handmade products in which they can detect unique qualities and the feeling that the product has been made solely for them. Counter-culture: The aim of the work is to produce alternatives for technoburocracy and mechanical production and to bring subjective and unique experiences into the customerïs monotonious life. This ideology rejects the usual standardized mass production of our times. Mythical character: There is a metamorphosis in the birth of the product. In many ways the design process is about birth and growth. The creative process is a development story of the maker. The complexity of communication is the expression of the moments that have been lived. If you can sense the process of making in the product it makes it more real and nearer to life. Each piece of wood has its own beauty. Before you can work with it you must find the deep soul of its quality. The distinctive traits of the material, technique and the object are an essential part of the metamorphosis which brings the product into life. The form is not only for formïs sake but for other purposes, too. You cannot find loose forms in nature. Products have their beginnings in the material and are a part of the nature. This art craft ideology that supports the ideas of generative design can be applied either to the hand made crafts production or to the production exploiting new technology. The unique characteristics of craft and the expression of the material based development are a way to broaden the expression and forms of industrial products. However, for a crafts person it is not meaningful to fill the world with objects. In generative, computer based production this is possible. But maybe the production of unique pieces is still slower and makes the industrial production in that sense more ecological. People will be more attached to personal and unique objects, and thus the life cycle of the objects produced will be longer.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 2
authors Montagu, Arturo
year 1998
title Desde La Computacion Grafica a los Sistemas CAD Actuales. Una Vision Historica de la Revolucion Producida en los Sistemas de Representacion Grafica (1966-1998) (From Graphical Computation to Present CAD Systems. An Historical Vision of the Revolution Produced in the Systems of Graphical Representation (1966-1998))
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 14-21
summary Throughout these pages are made known the persons, the projects and the books that have influenced my actions and that they will be mentioned in form underlined in this paper. I have to emphasize that since 1965 to 1970, and in the continuous search that I was accomplishing to find data and bibliography adapted to the topic of computer graphics, only two series of publications contained topics related to this matter at that time: one was the IBM Journal and the other series was the communications of the ACM. The purpose of this work is to make known an experience accomplished throughout 30 years of intense activity in finding new methods of drawing and design, based on the use of digital computers, mainly in Argentina, and during certain periods of time in Great Britain and since 1971 during short visits to the United States and also in France. The first idea emerged in the year 1965 when I was assistant teacher at the School of Architecture of the University of Buenos Aires, as a combination of ideas between the concepts of spatial geometry and the current morphological studies that we taught in the Course of professor Gaston Breyer. However the idea of automatic drawing emerged observing the operation of the first scientific digital computer installed in the Computing Institute of the Faculty of Sciences of the University of Buenos Aires in 1963 (Sadosky 1963). At the beginning, the approach to the computer were not accomplished from a strictly scientific point of view, but it was implying a kind of "sincresis" (Koheler 1940) it is more than a synthesis, because I was tried to combine ideas that have had its origin in different worlds of thinking, the analogous world and the digital world, and this situation was very difficult to accept at that time.The designing procedures in the decade 1960's was deeply rooted (and still continues) in the architectural design field as a result of a drawing process based in heuristic techniques.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 6
authors Neiman, Bennett and Bermudez, J.
year 1998
title Entre la Civilizacion Analoga y la Digital: El Workshop de Medios y Manipulacion Espacial (Between the Analogue and Digital Civilization: Workshop of Media and Space Manipulation)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 46-55
summary As the power shift from material culture to media culture accelerates, architecture finds itself in the midst of a clash between centuries old analog design methods (such as tracing paper, vellum, graphite, ink, chipboard, clay, balsa wood, plastic, metal, etc.) and the new digital systems of production (such as scanning, video capture, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc.). Moving forward requires a realization that a material interpretation of architecture proves limiting at a time when information and media environments are the major drivers of culture. It means to pro-actively incorporate the emerging digital world into our traditional analog work. It means to change. This paper presents the results of an intense design workshop that looks, probes, and builds at the very interface that is provoking the cultural and professional shifts. Media space is presented and used as an interpretive playground for design experimentation in which the poetics of representation (and not its technicalities) are the driving force to generate architectural ideas. The work discussed was originally developed as a starting exercise for a digital design course. The exercise was later conducted as a workshop at two schools of architecture by different faculty working in collaboration with it's inventor. The workshop is an effective sketch problem that gives students an immediate start into a non-traditional, hands-on, and integrated use of contemporary media in the design process. In doing so, it establishes a procedural foundation for a design studio dealing with digital media.
series SIGRADI
email
more http://www. arch.utah.edu/people/faculty/julio/studio.htm
last changed 2016/03/10 09:56

_id 220b
authors Potier, S., Malret, J.-L-. and Zoller, J.
year 1998
title Computer Graphics: Assistance for Archaeological Hypotheses
doi https://doi.org/10.52842/conf.acadia.1998.366
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 366-383
summary This paper is a contribution to the domain of computer tools for architectural and archeological restitution of ancient buildings. We describe an application of these tools to the modeling of the 14th century AD. Thermae of Constantin in Arles, south of France. It was a diploma project in School of Architecture of MarseilleLuminy, and took place in a context defined in the European ARELATE project. The general objective of this project is to emphasize the archeological and architectural heritage of the city of Arles; it aims, in particular, to equip the museum of ancient Arles with a computer tool enabling the storage and consultation of archaeological archives, the communication of information and exchange by specialized networks, and the creation of a virtual museum allowing a redescription of the monuments and a “virtual” visit of ancient Arles. Our approach involves a multidisciplinary approach, calling on architecture, archeology and computer science. The archeologist’s work is to collect information and interpret it; this is the starting point of the architect’s work who, using these elements, suggests an architectural reconstruction. This synthesis contains the functioning analysis of the structure and building. The potential provided by the computer as a tool (in this case, the POV-Ray software) with access to several three-dimensional visualizations, according to hypotheses formulated by the architect and archaeologists, necessitates the use of evolutive models which, thanks to the parametrization of dimensions of a building and its elements, can be adapted to all the changes desired by the architect. The specific contribution of POV-Ray in architectural reconstruction of thermae finds its expression in four forms of this modeling program, which correspond to the objectives set by the architect in agreement with archeologists: (a) The parametrization of dimensions, which contributes significantly in simplifying the reintervention process of the architectural data base; (b) Hierarchy and links between variables, allowing “grouped” modifications of modelized elements in order to preserve the consistency of the architectural building’s morphology; (c) The levels of modeling (with or without facing, for example), which admit of the exploration of all structural and architectural trails (relationship form/ function); and, (d) The “model-type,” facilitating the setting up of hypotheses by simple scaling and transformation of these models (e.g., roofing models) on an already modelled structure. The methodological validation of this modeling software’s particular use in architectural formulation of hypotheses shows that the software is the principal graphical medium of discussion between architect and archaeologist, thus confirming the hypotheses formulated at the beginning of this project.

series ACADIA
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e031
authors Stannard, Sandy
year 1998
title Computers in Design Exploring Light and Time
doi https://doi.org/10.52842/conf.acadia.1998.026
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 26-35
summary Computers have helped bring architectural education to a digital crossroads. This new tool is effecting architectural education on numerous levels, from the simplest word processing of research papers to more complex interactive modeling. This casestudy paper will focus on the new and changing role of the computer in the design studio. In this case, the approach to integrating the computer into the studio revolves around its application simply as another tool for a designer’s use. Clearly, the use of computers in design studios is not a new development. However, as the computer’s use in design education is not yet widespread, a dialogue about methods of application is valuable for design educators. The intent behind computer use in this case was not to replace traditional design methods but to complement and enhance them. In this spirit, this case study focuses on the use of computers to investigate two aspects of design that are challenging to model: light and time. In the studios to be examined here, students were required to explore their designs with both traditional tools (sketches on trace, physical study models as well as final finish models, etc.) and with newer digital tools (lighting simulation programs, threedimensional modeling programs, and animation). Students worked in teams in most cases. The computer was used both as a design tool as well as a representational tool, with varying degrees of success, depending on the student’s expertise, comfort using the computer as a design tool and access to appropriate hardware and software. In the first studio case study, the “new” medium of the computer was a perfect complement for the focus of the studio, entitled “Space and Light.” In addition to utilizing large scale physical models traditionally used for lighting design, three-dimensional computer models using Lightscape enriched the design results. Both sets of tools were vital for the design processes of the studio assignments. In the second studio case study, a traditional fourth year studio was required to use the computer to explore the dimension of time in their designs, which in this case translated into animation modeling. Integrating the computer into the design studio promises to be a complex task. As these examples will illustrate, the advantages and the disadvantages require continual balancing. Philosophical disagreement, potential discomfort, or a general lack of knowledge of digital tools may inhibit design educators from testing the potential of these ever-changing tools. Despite the challenges, this case study reveals the educational value of continued experimental use of digital tools in the design studio.

series ACADIA
email
last changed 2022/06/07 07:56

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ee24
authors Chien, S.-F., Magd, D., Snyder, J. and Tsa, W.-J.
year 1998
title SG-Clips: A System to Support the Automatic Generation of Designs From Grammars
doi https://doi.org/10.52842/conf.caadria.1998.445
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 445-454
summary SG-CLIPS is a computer tool that supports the automatic generation of designs from a predefined set of grammar rules that encapsulate the composition principles of a certain style of design. It is an open system that accepts any grammar conforming to the conventions described in this paper. We demonstrate the system through an example and discuss the relation to shape grammars and limitations.
keywords Generative Systems, Shape Grammars, Rule-based Design Tools, CLIPS
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:55

_id aac0
authors Garcia, Renato
year 1998
title Structural Feel or Feelings for Structure? - Stirring Emotions through the Computer Interface in Behaviour Analysis of Building Structures
doi https://doi.org/10.52842/conf.caadria.1998.163
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 163-171
summary The use of computers in the analysis of architectural structures has at present become indispensable and fairly routine. Researchers & professionals in architecture and engineering have taken advantage of current computer technology to develop richer and more comprehensive interactive interfaces in systems designed to analyse structural behaviour. This paper discusses a research project which attempts to further enrich such computer interfaces by embodying emotion or mood (affective) components into them and assessing the effects of incorporating these into multimodal learning modules for students of architecture at the University of Hong Kong. Computer structural analysis is most often used to determine the final state of a structure after full loading, but can also be used very ably to depict the time-history behaviour of a structure. The time-dependent nature of this process of behaviour provides an excellent opportunity to incorporate emotion cues for added emphasis and reinforcement. Studying time-history behaviour of structures is a vital part of classroom learning in structures and this why such emotion cues can have significant impact in such an environment. This is in contrast to the confines of professional engineering practices where these cues may not be as useful or desirable because oftentimes intermediate time history data is bypassed as a blackbox and focus is placed primarily on bottomline analysis results. The paper will discuss the fundamental basis for the establishment of emotional cues in this project as well as it's implementation-which consists mainly of two parts. The first involves 'personifying' the structure by putting in place a structure monitoring system analogous to human vital signs. The second involves setting up a 'ladder' of emotion states (which vary from feelings of serenity to those of extreme anxiety) mapped to the various states of a structures stability or condition. The paper will further elaborate on how this is achieved through the use of percussion, musical motifs, and chord progression in resonance with relevant graphical animations. Initially in this project, emotion cues were used to reinforce two structural behaviour tutoring systems developed by this author (3D Catenary Stuctures module & Plastic Behaviour of Semi-rigid Steel Frames module). These modules were ideal for implementing these cues because both depicted nonlinear structural behaviour in a mainly time-history oriented presentation. A brief demonstration of the actual learning modules used in the project study will also be presented together with a discussion of the assessment of it's effectiveness in actual classroom teaching.
keywords Affective Interfaces, Human-Computer Interaction, Computer-Aided-Engineering
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:50

_id a06a
authors Gu, Jingwen and Xie, Guanghui
year 1998
title Dynamic Database Management in Computer Aided Residential District Design System
doi https://doi.org/10.52842/conf.caadria.1998.243
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 243-252
summary Compare with business database, the engineering database is much more difficult to be designed and implemented. In this paper the issues on the dynamic engineering component database and its management involved in implementation of an AutoCAD based experimental CAD system, Computer Aided Residential District Planning and Design System (CARPDS), are discussed. The discussions focus on the organization, access control of the database and the supporting environment.
keywords Engineering Database, DBMS
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:51

_id 2d0a
authors Hirschberg, Urs
year 1998
title Fake.Space - An Online Caad Community and a Joint Enquiry into the Nature of Space
doi https://doi.org/10.52842/conf.caadria.1998.281
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 281-290
summary fake.space was an elective CAAD course in which the (over 120) participating students were an online community. They jointly built up the fake.space node system, a database in which the individual contributions were linked and could be viewed and navigated through in various ways. The topics of the nodes were different aspects and concepts of space. The paper describes the conceptual as well as some technical aspects of this teaching experiment and evaluates its outcome.
keywords CAAD education, Collaborative Work, Database-Support, On-Line Community, Virtual Space, Narrative Structures
series CAADRIA
email
more http://space.arch.ethz.ch/ss97/
last changed 2022/06/07 07:50

_id 6db8
authors Iki, K., Shimoda, S., Miyazaki, T. and Homma, R.
year 1998
title On the Development and the Use of Network Based Cafm System
doi https://doi.org/10.52842/conf.caadria.1998.253
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 253-260
summary The purpose of this study to develop a prototype of the network based and distributed database integrated CAFM (Computer Aided Facility Management) system for spatial analysis and space planning of office building. This system developed for the FM (Facility Management) works of large company that owns many office buildings in wide spread area. This system has following characteristic capabilities; 1) data acquisition from distributed database 2) benchmark comparison among in-house offices, particular office and several outside office standards 3) analysis of POE database and spatial condition database 4) evaluation of space planning by using CAD database and POE database This paper reports these four points. 1) conceptual and functional frame work of the system 2) technical arrangement of the system development 3) case study of the system use in a FM works on spatial analysis and space planning 4) evaluation of the system
keywords CAFM, POE, Windows, Network
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:49

_id 203b
authors Jabi, Wassim M.
year 1998
title The Role of Artifacts in Collaborative Design
doi https://doi.org/10.52842/conf.caadria.1998.271
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 271-280
summary With the proliferation of digital technology, a new category of design artifacts, usually described with the term virtual, has emerged. Virtual artifacts have gained further prominence due to the advances made in collaboration software and networking technologies. These technologies have made it easier to communicate design intentions through the transfer and sharing of virtual rather than physical artifacts. This becomes particularly true in the case of long-distance or international collaborative efforts. This paper compares the two major categories of artifacts – the physical and the computer-based – and places them in relationship to an observed collaborative design process. In order to get at their specific roles in collaboration, two case studies were conducted in which designers in academic and professional settings were observed using a methodology which focused on participation in the everydayness of the designer as well as casual discussions, collection of artifacts, note-taking, and detailed descriptions of insightful events. The collected artifacts were then categorized according to the setting in which they were created and the setting in which they were intended to be used. These two attributes could have one of two values, private or public, which yield a matrix of four possible categories. It was observed that artifacts belonging in the same quadrant shared common qualities such as parsimony, completeness, and ambiguity. This paper finds that distinguishing between physical and virtual artifacts according to their material and imagined attributes is neither accurate nor useful. This research illustrates how virtual artifacts can obtain the qualities of their physical counterparts and vice versa. It also demonstrates how a new meta-artifact can emerge from the inclusion and unification of its material and imagined components. In conclusion, the paper calls for a seamless continuity in the representation and management of physical and virtual artifacts as a prerequisite to the success of: (1) computer-supported collaborative design processes, (2) academic instruction dealing with making and artifact building, and (3) executive policies in architectural practice addressing the management of architectural documents.
keywords Collaborative Design Process
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_909947 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002