CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 537

_id 489a
authors Matthews, K., Duff, S. and Corner, D.
year 1998
title A Model for Integrated Spatial and Structural Design of Buildings
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 123-132
doi https://doi.org/10.52842/conf.caadria.1998.123
summary Recent advances in computer graphics and 3D user interfaces have enabled the emergence of 3D sketch modeling as a viable approach to architectural design, especially in the early schematic phase. This paper describes how a system can be built and used which integrates the capabilities of a good structural analysis system in the user-friendly working environment of a design-oriented modeling program. The structure of a building model as seen by finite element algorithms is a schematic idealization of the building's physical structure into nodes, elements, internal releases, boundary conditions, and loads. The more familiar architectural model used for design visualization represents spatial elements such as roofs, floors, walls, and windows. Rather than treat these models independently, the structural model can be defined in relation to the architectural as a virtual model with inherited common characteristics and additional relational and attribute information, using feature-based geometry data structures to organize topological intelligence in the spatial model. This provides the basis for synchronous modification of structural and architectural aspects of the design.
keywords Structural Design, Spatial Design, Design Integration, Human-Computer Interaction, Feature-Based Modeling, Finite Element Analysis, Geometric Inference
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:58

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id 5688
authors Conen, W. and Neumann, G. (eds.)
year 1998
title Coordination Technology for Collaborative Applications
source Springer
summary Given the broad popularity of Internet technology, even in its present immature state, and also the recent progress made towards a human-centered view of information technology, the time now seems ripe to essentially extend the scope and power of enterprise information systems. This carefully arranged book concentrates on the relationships between coordination technology and business application requirements and introduces general elements of a cooperative infrastructure allowing for the construction of collaborative applications. It is essential reading for research and development professionals active in the area as well as for IT managers interested in applying this promising new technology in order to remain competitive in the future.
series other
last changed 2003/04/23 15:14

_id c3e0
authors Dorsey, J. and McMillan, L.
year 1998
title Computer Graphics and Architecture: State of the Art and Outlook for the Future
source Computer Graphics, Vol 32, No 1, Feb 1998. pp. 45-48
summary During the three decades since Ivan Sutherland introduced the Sketchpad system, there has been an outpouring of computer graphics systems for use in architecture. In response to this development, most of the major architectural firms around the world have embraced the idea that computer literacy is mandatory for success. We would argue, however, that most of these recent developments have failed to tap the potential of the computer as a design tool. Instead, computers have been relegated largely to the status of drafting instruments, so that the "D" in CAD stands for drafting rather than design. It is important that future architectural design systems consider design as a continuous process rather than an eventual outcome.The advent of computer graphics technology has had an impact on the architectural profession. Computer graphics has revolutionized the drafting process, enabling the rapid entry and modification of designs. In addition, modeling and rendering systems have proven to be invaluable aids in the visualization process, allowing designers to walk through their designs with photorealistic imagery. Computer graphics systems have also demonstrated utility for capturing engineering information, greatly simplifying the analysis and construction of proposed designs. However, it is important to consider that all of these tasks occur near the conclusion of a larger design process. In fact, most of the artistic and intellectual challenges of an architectural design have already been resolved by the time the designer sits down in front of a computer. In seeking insight into the design process, it is generally of little use to revisit the various computer archives and backups. Instead, it is best to explore the reams of sketches and crude balsa models that fill the trash cans of any architectural studio.In architecture, as in most other fields, the initial success of computerization has been in areas where it frees humans from tedious and mundane tasks. This includes the redrawing of floor plans after minor modifications, the generation of largely redundant, yet subtly different engineering drawings and the generation of perspective renderings.We believe that there is a largely untapped potential for computer graphics as a tool in the earlier phases of the design process. In this essay, we argue that computer graphics might play a larger role via applications that aid and amplify the creative process.
series journal paper
last changed 2003/04/23 15:50

_id 50a1
authors Hoffman, Donald
year 1998
title Visual Intelligence
source Norton Publishing, New York
summary After his stroke, Mr. P still had outstanding memory and intelligence. He could still read and talk, and mixed well with the other patients on his ward. His vision was in most respects normal---with one notable exception: He couldn't recognize the faces of people or animals. As he put it himself, "I can see the eyes, nose, and mouth quite clearly, but they just don't add up. They all seem chalked in, like on a blackboard ... I have to tell by the clothes or by the voice whether it is a man or a woman ...The hair may help a lot, or if there is a mustache ... ." Even his own face, seen in a mirror, looked to him strange and unfamiliar. Mr. P had lost a critical aspect of his visual intelligence. We have long known about IQ and rational intelligence. And, due in part to recent advances in neuroscience and psychology, we have begun to appreciate the importance of emotional intelligence. But we are largely ignorant that there is even such a thing as visual intelligence---that is, until it is severely impaired, as in the case of Mr. P, by a stroke or other insult to visual cortex. The culprit in our ignorance is visual intelligence itself. Vision is normally so swift and sure, so dependable and informative, and apparently so effortless that we naturally assume that it is, indeed, effortless. But the swift ease of vision, like the graceful ease of an Olympic ice skater, is deceptive. Behind the graceful ease of the skater are years of rigorous training, and behind the swift ease of vision is an intelligence so great that it occupies nearly half of the brain's cortex. Our visual intelligence richly interacts with, and in many cases precedes and drives, our rational and emotional intelligence. To understand visual intelligence is to understand, in large part, who we are. It is also to understand much about our highly visual culture in which, as the saying goes, image is everything. Consider, for instance, our entertainment. Visual effects lure us into theaters, and propel films like Star Wars and Jurassic Park to record sales. Music videos usher us before surreal visual worlds, and spawn TV stations like MTV and VH-1. Video games swallow kids (and adults) for hours on end, and swell the bottom lines of companies like Sega and Nintendo. Virtual reality, popularized in movies like Disclosure and Lawnmower Man, can immerse us in visual worlds of unprecedented realism, and promises to transform not only entertainment but also architecture, education, manufacturing, and medicine. As a culture we vote with our time and wallets and, in the case of entertainment, our vote is clear. Just as we enjoy rich literature that stimulates our rational intelligence, or a moving story that engages our emotional intelligence, so we also seek out and enjoy new media that challenge our visual intelligence. Or consider marketing and advertisement, which daily manipulate our buying habits with sophisticated images. Corporations spend millions each year on billboards, packaging, magazine ads, and television commercials. Their images can so powerfully influence our behavior that they sometimes generate controversy---witness the uproar over Joe Camel. If you're out to sell something, understanding visual intelligence is, without question, critical to the design of effective visual marketing. And if you're out to buy something, understanding visual intelligence can help clue you in to what is being done to you as a consumer, and how it's being done. This book is a highly illustrated and accessible introduction to visual intelligence, informed by the latest breakthroughs in vision research. Perhaps the most surprising insight that has emerged from vision research is this: Vision is not merely a matter of passive perception, it is an intelligent process of active construction. What you see is, invariably, what your visual intelligence constructs. Just as scientists intelligently construct useful theories based on experimental evidence, so vision intelligently constructs useful visual worlds based on images at the eyes. The main difference is that the constructions of scientists are done consciously, but those of vision are done, for the most part, unconsciously.
series other
last changed 2003/04/23 15:14

_id 00eb
authors Morozumi, Mitsuo
year 1998
title Gradual Introduction of CAAD to Develop and Support Students’ Ability in Design Studio
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 107-114
doi https://doi.org/10.52842/conf.ecaade.1998.107
summary How to integrate CAAD into design education, and how to teach CAAD as a tool of design thinking has been a difficult issue left unresolved for architecture schools. This paper discusses the possible approach to these issues which were experienced in a Japanese university. In the first section, it will summarize the present situation of CAAD education in Japan. The second section reports the framework of design education and roles of CAAD programmed in a department. The third section introduces an example of course programs and students’ work. The fourth section observes a recent outcome of experimented program, such as, students’ work, scores and some results of a student questionnaire. In the final section, it will discuss the approach that introduce different levels of CAAD usage to design studios as the level of design education advances, was successful to integrate CAAD into design education.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:59

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ga9813
id ga9813
authors Pontecorvo, Michael Steven
year 1998
title Designing the Undesigned: Emergence as a tool for design
source International Conference on Generative Art
summary Design, as an act and a result, is a natural part of the larger biological context in which we live. It is both a behavior and a tangible side effect of the organic system from which it arises. A design can be characterized as a physical exemplar of the concept of memes, the 'genetic' building blocks of ideas or units of cultural transmission. In this capacity, design has served to extend humankind's reach and ensure and enrich humankind's survival in the full range and variability of conditions the Earth has to offer. In a very real sense, design has 'evolved' its own rich ecosystem, with a robust diversity of elements, dynamics, and interrelationships rivaling that of the organic system from which it derives. In the ecology of design, designs obey laws analogous to the laws of survival and selection that organisms in nature obey. Given the recent advances in understanding and modeling of the biological and physical systems, it is not surprising that artists and designers are now turning to these models as a 'new' resource for the conceptualization and design of structured artifacts and spaces. While there are many fundamental technical issues surrounding development and application of generative models and processes, the relationship of artist to the process of creation is a central issue in the scaling up and widespread accessibility/acceptance of the generative approach. This paper will present a set of observations from the perspective of a small company of artist/ technologists trying to bridge the commercial and artistic application of generative processes. Specifically, the paper will explore some approaches to the designer/system relationship and process control metaphor, the balancing of serendipity and design convergence, the definitions and representations of design spaces, and finally, present some ideas about the future prospects and promising new techniques for generative design.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 67b0
authors Young, Robert A.
year 1998
title Climatic Factors in Regional Design: An Interactive Tool for Design Education
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 188-201
doi https://doi.org/10.52842/conf.acadia.1998.188
summary This paper describes the development of an interactive computerized module developed as a digital resource for architectural design students that incorporates the premise of using architectural form as a primary environmental control system in a building. The first in a series of such modules, Climactic Factors in Regional Design illustrates the factors involved in regional design strategies. With the recognition that many design practices of the latter twentieth century are not environmentally sustainable, this module is to be used in a curriculum which recognizes that sustainable architecture begins by using architectural form as the primary environmental control system and the mechanical and electrical systems supplement that system not dominate it. With recent advances in recognizing sustainability issues, the country is now more willing to embrace environmental stewardship. The path to reduce environmental problems is through the integration of practices recognize architectural form as a primary environmental control system. As such, the latest generation of designers must view design comprehensively. If future building designers are to succeed, environmental control integration needs to be included pro-actively within the initial design rather than reactively appended to the end. Climatic Factors in Regional Design is designed to foster this paradigm shift and is divided into several topics and subtopic sections which include Introduction, Regional Design, Microclimate, Regional Guidelines, Design Strategies, Glossary, and Sample Examination. The module contains 260 screen displays and more than 250 illustrations, figures, and diagrams. Users can progress through the module in any sequence as their needs warrant. The module was developed using the academic version of Authorware Star by Macromedia.

series ACADIA
email
last changed 2022/06/07 07:57

_id 8b37
authors Massie, T.
year 1998
title A Tangible Goal for 3D Modeling
source IEEE Computer Graphics and Applications. pp. 62 - 65. Vol. 18, Issue: 3
summary Although the speed of computers increases exponentially, the amount and quality of useful work that we perform on them seems to increase linearly at best. Faster processors are not enough-to significantly increase the utility of computers requires new computer interfaces. The keyboard was adequate for text-based applications, but the advent of the desktop metaphor and windows computing environment demanded a new mechanical interface-the mouse. As we progress into applications that incorporate interactive life-like 3D computer graphics, the mouse falls short as a user interface device, and it becomes obvious that 3D computer graphics could achieve much more with a more intuitive user interface mechanism. Haptic interfaces, or forcefeedback devices, promise to increase the quality of humancomputer interaction by accommodating our sense of touch. Of all the senses, only touch is bidirectional-allowing us to perceive and change objects simultaneously in the same location. Because the sense of touch is so compelling, researchers have studied it for some time.1,2 (Refer to the annual proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, published by the American Society of Mechanical Engineers, New York.) Various commercial devices are now available that can accommodate1 even seven degrees of freedom. I used the three degrees-of-freedom Phantom haptic interface for most of the interactions described in this article. Users interact with the Phantom interface with their finger in a thimble or by holding a stylus
series journal paper
last changed 2003/04/23 15:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddss9811
id ddss9811
authors Barbanente, A., Conte, E. and Monno, V.
year 1998
title Changing trends and approaches in human and computer modelling for social housing policies
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The paper discusses conceptual issues, goals and preliminary results of an on-going research which aims at building a Decision Support System for public housing environmental oriented maintenance and management in a city in Southern Italy, Bari. Traditional post-war Italian housing policies are compared with more recent approaches in the field, pointing out the change from quantitative, aggregated, more simple building problems and relatedapproaches to qualitative, differentiated, complex ones integrating social, economic and environmental dimensions with the aim of regenerating deteriorated residential areas. The paper claims for the need shift, both in the human and computer areas, from traditional quantitative models to new approaches able to manage also qualitative variables, temporal dynamics, emergencies, and intentionality, since they appear key aspects of the real world to be modelled. The housing estate of Bari and its needs of maintenance and management are examined, eliciting essential related knowledge using the interview technique. The clear orientation towards sustainable policies for urban regeneration, at a local, national, and Community level, is also considered. The innovative and collaborative nature of such policies and the attention to be paid to the social aspects ofthe problem require a complex DSS, integrating various kind of hypertexts, information systems and case-based fuzzy expert systems, whose main aims, functions, software and general organisation are outlined in the paper.
series DDSS
last changed 2003/11/21 15:16

_id 21
authors Barroso, Jorge
year 1998
title Reflexiones Sobre la EnseŇanza de la Arquitectura, la Informatica e Internet (Reflections on the Teaching of the Architecture, Computing and the Internet)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 174-179
summary This paper proposes a reflection upon the teaching of architecture as seen from the actual practice of the profession within the context of the changes caused by the widespread use of computers and Internet in recent years. This proposal designates the present time as "semic revolution", superseding denominations like post industrial" or information revolution", emphasizing that the "mental prosthesis" created by man represents the highest degree of exploitation of his innerness as a "semic subject". A brief epistemological framework serves to lay the foundation for the concepts of imagination, creation, and design, differentiating the creator by his characteristic of requiring or not, semic mediation in order to reach his goals. The dominant use of new instruments which serve to represent and operate the "primary virtual object" giving priority to the comprehension and function of the new tool over the acquisition of information and ability to use it, is proposed when carried over to the field of application. The integration of internal networks through email strives not only to facilitate document transmission, exercises, group work, etc. but to understand the new dimension in the intellectual activities of man.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 7
authors Bermudez, Julio
year 1998
title Interaccion de Medios y Proceso De DiseŇo: Teoria y Base de Conocimientos Para una Produccion Arquitectonica Hibrida (Interaction of Design Media and Process: Theory and Knowledge Base for in the Production of Architectural Hybrids)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 56-65
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not yet either developed a theoretical base that connects their procedures to a larger conceptual framework nor been sufficiently cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses the first shortcoming in the light of the forces transforming our contemporary civilization and architecture.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 029f
authors Bermudez, Julio and King, Kevin
year 1998
title Media Interaction & Design Process: Establishing a Knowledge Base
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 6-25
doi https://doi.org/10.52842/conf.acadia.1998.006
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. Analog systems of architectural production use tracing paper, vellum, graphite and ink, clipboard, clay, balsa wood, plastic, metal, etc. Analog systems have also been termed ‘handmade’, ‘manual’, ‘material’ or ‘physical’. Digital systems of architectural production use scanning, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc. Digital systems have also been called ‘electronic’, ‘computer-aided’, ‘virtual’, etc. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not been sufficiently codified, cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses this shortcoming by bringing together reported experiences from diverse researchers over the past decade. This summary is informed by more than three years of continuous investigation in the impacts of analog-digital conversations in the design process. The goal is to establish a state-of-the-art common foundation that permits instructors, researchers and practitioners to refer to, utilize, test, criticize and develop. An appendix is included providing support for the paper’s arguments.

series ACADIA
email
last changed 2022/06/07 07:52

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id aa52
authors Chiu, Mao-Lin
year 1998
title The Design Guidance of CSCW - Learning from Collaborative Design Studios
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 261-270
doi https://doi.org/10.52842/conf.caadria.1998.261
summary Computer supported collaborative work (CSCW) becomes important for the architectural practice and design education in recent years. Design guidance on design operations facilitates design studios to achieve their educational and research purposes. This study depicts the experience of computer-supported collaborative design learned from three collaborative design studios. Design guidance can advise participants to understand the purpose of communication in CSCW, anticipate design collaboration, and formulate design operations by the process model. Based on the observations of CDS, the discussion focuses on how to develop guidance on design operations according to the following factors: (1) structured framework, (2) the kind of technology, (3) the level of communication, and (4) the process model of CSCW.
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:56

_id ddss9819
id ddss9819
authors Emdanat, S. S. and Vakalo, E.-G.
year 1998
title Sharing Design Knowledge Using Shape Algebras
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Recent work on shape algebras and the maximal element representation produced a uniform and composable representation of shapes. This paper presents ongoing work to formulate a framework for sharing design knowledge based on shape algebras. The shape algebraic definitions are translated into Ontolingua, a framework for representing ontologies. It provides forms for defining classes, relations, functions, objects, and theories that are part of a conceptualization. The paper discusses some of the axioms and definitions of this ontology. It discusses the factors that influenced its design and the selection of its representational abstractions.
series DDSS
email
last changed 2003/08/07 16:36

_id ga9802
id ga9802
authors Frazer, J.H.
year 1998
title MACROGENESIS: Generative Design at the Urban Scale
source International Conference on Generative Art
summary This is a reflective paper indicating key points in the author’s involvement in generative design. Selected work is summarised in a series of snapshots of key developments. More recent evolutionary work is explained more fully including the "Groningen Experiment" which applied generative ideas to an interactive city planning model for Groningen that enabled citizen interaction with a generative model. The project has now been relocated in the School of Design, the Hong Kong Polytechnic University where the work is being expanded into the realm of industrial design and graphics.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c65d
authors Habraken, N.J. and Teicher, J (ed.)
year 1998
title The Structure of the Ordinary
source MIT Press, Cambridge, USA, pp. 73-76
summary According to N. J. Habraken, intimate and unceasing interaction between people and the forms they inhabit uniquely defines built environment. The Structure of the Ordinary, the culmination of decades of environmental observation and design research, is a recognition and analysis of everyday environment as the wellspring of urban design and formal architecture. The author's central argument is that built environment is universally organized by the Orders of Form, Place, and Understanding. These three fundamental, interwoven principles correspond roughly to physical, biological, and social domains. Historically, "ordinary" environment was the background against which architects built the "extraordinary." Drawing upon extensive examples from archaeological and contemporary sites worldwide, the author illustrates profound recent shifts in the structure of everyday environment. One effect of these transformations, Habraken argues, has been the loss of implicit common understanding that previously enabled architects to formally enhance and innovate while still maintaining environmental coherence. Consequently, architects must now undertake a study of the ordinary as the fertile common ground in which form- and place-making are rooted. In focusing on built environment as an autonomous entity distinct from the societies and natural environments that jointly create it, this book lays the foundation for a new dialogue on methodology and pedagogy, in support of a more
series other
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_256995 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002