CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 557

_id 487c
authors Blazquez, Oscar and Hardin, Mary
year 1998
title Balancing Computer Use and Design Content in Studio Projects
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 36-43
doi https://doi.org/10.52842/conf.acadia.1998.036
summary Particular design approaches must be taught in order to take advantage of the strengths of computers in design rather than attempting to make computers conform to methods developed as by-products of manual design techniques. For the last three years our team of faculty teaching the second year design studio has been trying different approaches to the use of computers in design, in order to find the advantages and opportunities especially suited to electronic media. There are several projects during the semester which use computers at different stages of the design process. One of these projects, called “A Spatial Sequence,” uses information from a previous project as well as the knowledge from the computer class in parallel to design studio. The project asked students to create spatial archetypes based on the work of well-known architects. They explore the following topics as represented in the work of one particular architect: relationships of major spaces/minor spaces, approach/entry, and transition/threshold. Following the analysis, they create digital models to explore the spaces formed by their archetypes. Before committing to a physical study model, they look at the transitions between spaces by creating a sequence using the digital model and producing a series of shots through the digital model to show the flow of spaces. The use of computer through the process accelerates the options available to explore a sequence of elements, while simultaneously giving them a window to look into the spaces they have created. This hybridized approach of precedent analysis, digital modeling, and physical modeling was uniquely suited to the studio problem.

series ACADIA
email
last changed 2022/06/07 07:52

_id 6397
authors Marx, John
year 1998
title A Proposal for Alternative Methodologies in Teaching Digital Design
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 58-73
doi https://doi.org/10.52842/conf.acadia.1998.058
summary Computers have the potential to radically change the process of architectural design, and match more closely the formal aspirations of contemporary designers. What, then, should be the direction educators take in response to the opportunities created by the use of computers in the design process? There are, perhaps, two obvious methods of teaching Digital Design at a university level; a course adjunct to a design studio, or a course offered independently of a design studio. The computer is a facilitator of design ideas, but by itself, is not a creator of content. The primary responsibility of the design studio is the creation of content. It is the implementation of theory and critical analysis which should be the core concern of studio instruction. Given the limited time students are exposed to design studio it would seem appropriate, then, that the digital tools, which facilitate the design process, be taught separately, so as not to dilute the design studios importance. Likewise, this separation should allow the student to concentrate attention on Digital Design as a comprehensive process, beginning with initial massing studies and ending with high resolution presentation drawings. The burden of learning this new process is difficult as well as time consuming. Students are generally struggling to learn how to design, much less to design on the computer. In addition, the current lack of digital skills on the part of design faculty makes it difficult to create a level of consistency in teaching digital design. Compounding these problems is the cost to architectural departments of providing hardware and software resources sufficient to have a computer on every studio desk.
series ACADIA
email
last changed 2022/06/07 07:59

_id ddss9845
id ddss9845
authors Reymen, Isabelle M.M.J.
year 1998
title Design in Architecture, Software Engineering and Mechanical EngineeringA comparative study
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary The awareness about the gap between general design theory and design practice is increasing. Design practice is not really served with the results of current design theory. To build a bridge between theory and practice, design researchers should know what is really going on in practice. To explore design practice and to find the most important characteristics of design situations, I have chosen an empirical approach based on case studies in which design projects in different disciplines are compared. In each case study, an individual designer is interviewed and the design documents are analysed. The results in this article are based on two architectural projects, two software-engineering projects and two mechanical-engineering projects. The cross-case analysis has resulted indescriptions of design situations in these disciplines. A preliminary design frame to describe design situations in different disciplines has been derived. Based on similarities and differences in the descriptions, conclusions concerning design theory, design education and design practice are given. The most important conclusions are the following. First, designers are often not aware of their design process, but focus mainly on the product. Second, software designers more often than architects andmechanical engineers use methods to structure their overall design process.
series DDSS
email
last changed 2003/08/07 16:36

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8b38
authors Do, Ellen Yi-Luen and Gross, Mark D.
year 1998
title The Sundance Lab- "Design Systems of the Future"
source ACADIA Quarterly, vol. 17, no. 4, pp. 8-10
doi https://doi.org/10.52842/conf.acadia.1998.008
summary The last thirty years have seen the development of powerful new tools for architects and planners: CAD, 3D modeling, digital imaging, geographic information systems, and real time animated walkthroughs. That’s just the beginning. Based on our experience with CAD tools, analysis of design practice, and an understanding of computer hardware and software, we’re out to invent the next generation of tools. We think architects should be shakers and makers, not just consumers, of computer aided design. We started the Sundance Lab (for Computing in Design and Planning) in 1993 with a few people and machines. We’ve grown to more than a dozen people (mostly undergraduate students) and a diverse interdisciplinary array of projects. We’ve worked with architects and planners, anthropologists, civil engineers, geographers, computer scientists, and electrical engineers. Our work is about the built environment: its physical form and various information involved in making and inhabiting places. We cover a wide range of topics – from design information management to virtual space, from sketch recognition to design rationale capture, to communication between designer and computer. All start from the position that design is a knowledge based and information rich activity. Explicit representations of design information (knowledge, rationale, and rules) enables us to engage in more intelligent dialogues about design. The following describes some of our projects under various rubrics.
series ACADIA
email
last changed 2022/06/07 07:55

_id 20f7
authors Moorhouse, John
year 1998
title Categorisation of Computer-Aide-Design Actions Through Visual Exemplification
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 164-171
doi https://doi.org/10.52842/conf.ecaade.1998.164
summary This paper summarises, in a preliminary announcement, some outcomes arising from the author?s research ?A Developed Methodology for Recording, Evaluating and Presenting CAAD as a Vehicle for Designing?, in which a methodology for making visually explicit the design actions of architects has been designed, developed and tested. Specifically it describes the categorisation of computer-aided design actions through visual exemplification, whereby ?Categories of Action? of creative computer activity are constructed from, and defined by, grouped visual records of ?Design Moves? which exhibit similarity in character. The value of examining design actions as a means to stimulate and enhance creativity for other designers is explained, and the methodology developed and employed in order to construct a resource to do this is outlined. The main body of the paper focuses on descriptions of selected, constructed ?Categories of Action? which are outcomes from analysis of material collected as part of this research. Conclusions are drawn on their relevance to the designer and suggestions for further synthesis of the Categories of Action are offered.
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/06moorhouse/index.htm
last changed 2022/06/07 07:58

_id e031
authors Stannard, Sandy
year 1998
title Computers in Design Exploring Light and Time
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 26-35
doi https://doi.org/10.52842/conf.acadia.1998.026
summary Computers have helped bring architectural education to a digital crossroads. This new tool is effecting architectural education on numerous levels, from the simplest word processing of research papers to more complex interactive modeling. This casestudy paper will focus on the new and changing role of the computer in the design studio. In this case, the approach to integrating the computer into the studio revolves around its application simply as another tool for a designer’s use. Clearly, the use of computers in design studios is not a new development. However, as the computer’s use in design education is not yet widespread, a dialogue about methods of application is valuable for design educators. The intent behind computer use in this case was not to replace traditional design methods but to complement and enhance them. In this spirit, this case study focuses on the use of computers to investigate two aspects of design that are challenging to model: light and time. In the studios to be examined here, students were required to explore their designs with both traditional tools (sketches on trace, physical study models as well as final finish models, etc.) and with newer digital tools (lighting simulation programs, threedimensional modeling programs, and animation). Students worked in teams in most cases. The computer was used both as a design tool as well as a representational tool, with varying degrees of success, depending on the student’s expertise, comfort using the computer as a design tool and access to appropriate hardware and software. In the first studio case study, the “new” medium of the computer was a perfect complement for the focus of the studio, entitled “Space and Light.” In addition to utilizing large scale physical models traditionally used for lighting design, three-dimensional computer models using Lightscape enriched the design results. Both sets of tools were vital for the design processes of the studio assignments. In the second studio case study, a traditional fourth year studio was required to use the computer to explore the dimension of time in their designs, which in this case translated into animation modeling. Integrating the computer into the design studio promises to be a complex task. As these examples will illustrate, the advantages and the disadvantages require continual balancing. Philosophical disagreement, potential discomfort, or a general lack of knowledge of digital tools may inhibit design educators from testing the potential of these ever-changing tools. Despite the challenges, this case study reveals the educational value of continued experimental use of digital tools in the design studio.

series ACADIA
email
last changed 2022/06/07 07:56

_id ddss9860
id ddss9860
authors Vakalo, E-G. and Fahmy, A.
year 1998
title A Theoretical Framework for the Analysis and Derivation of Orthogonal Building Plans and Sections
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary Architects are generally perceived as “Formgivers with an extraordinary gift” (Ackerman, 1980:12). Implicit in this statement is the belief that the operations that architects employ to compose their designs are the product of a creative faculty that is beyond the reach of rational discourse, and thereby cannot be subjected to logical investigation. This view is detrimental to the advancement of knowledge about architectural composition and adversely affects both practice and education in architecture. More specifically, it prevents the architectural community from acquiring of a more refined conception about how architects derive their designs. In contrast to this view, this study demonstrates that architectural form-making is amenable to logical analysis. In specific, this is to be done through a theoretical and computational framework that describe and explain the tasks involved in the making of orthogonal building plans and sections. In addition to illustrating the susceptibility of architectural form-making to logical analysis, the frameworks proposed in this study overcome the limitations of previously established theories thatdeal with architectural form-making. These can be divided into two categories: normative and positive theories.Normative theories include architectural treatises and manifestos. A major limitation of normativetheories is that they have limited explanatory power. Their concern is with promoting a specific aesthetic ideology and prescribing rules that can be used to derive compositions that conform to it. Therefore, they cannot be used to explain form-making in general. Positive frameworks, such asshape grammar, rely on rules to describe derivation and analysis processes. Nevertheless, they do not provide a comprehensive description of the tasks involved in architectural form-making. This causes the relation between the rules and compositional tasks to be ambiguous. It also affects adversely the ability of these frameworks to provide architects with a complete understanding of the role of compositional rules in derivation or analysis processes.
series DDSS
type normal paper
last changed 2010/05/16 09:11

_id 2796
authors Brown, Andy and Lee, Hwa, Ryong
year 1998
title A Mental Space Model
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 27-42
summary The architectural design process is often characterised a series of evolving ideas, and involving a cyclical process between design and visualisation. However, the nature of the internal representation still remains unclear. What is actually represented in a designers mental space and what drives and influences the mental design process? If we wish to programme a computer to mimic or work in tandem with the mental processes involved we need to make that representation and the associated cognitive processes explicit. The ways that designers form mental representations are so diverse, personal, and often transient that it is not easy to externalise and articulate them in explicit terms. In order to propose a mental model, we can take in a particular I psychological research approach; that of introspective observation from design drawing . In doing so, we posit an assumption that the designer's drawing can be seen as an extension of the internal mental feature, and hence internal representation could be inferred from the analysis of external representation - the drawing or sketch. This approach contrasts with the protocol analysis approach where mental operations are inferred from words, what could be termed thinking aloud.
series plCAD
email
last changed 2003/05/17 10:01

_id ee96
authors Johnson, Scott
year 1998
title Making Models Architectural: Protean Representations to Fit Architects’ Minds
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 354-365
doi https://doi.org/10.52842/conf.acadia.1998.354
summary A rich vocabulary has evolved for describing architecture. It serves not only as a means of communication, but also as an embodiment of concepts relating to form, space, structure, function, mood, and symbolism. We architects not only speak in terms of walls, rooms, roofs, arches, etc., we see in terms of them and think in terms of them, as well. Such concepts are integral to our ability to design. Typical CAD representations, however, are based on geometric/mathematical elements like points, lines, planes, and symbols. Even more experimental approaches like parametric shapes or procedural assemblies correspond poorly to architectural elements, and seldom lend themselves well to making conceptual changes that would allow exploration of design alternatives. Small wonder some architecture schools experience a division between computer and studio courses, or even between computer and studio faculty. Different ways of talking and thinking are involved. The concepts involved are often mutually exclusive. This paper discusses an attempt to address this conceptual mismatch, using what are termed “protean” (meaning “very changeable”) elements. These are high-level elements corresponding to architectural concepts like “wall,” or “dome.” They each have parameters appropriate for the particular type of element they represent, and produce the polyhedra necessary for graphics based on these parameters. A system is being implemented to allow models to be constructed using these elements. The protean elements form a loosely structured model, in which some elements hierarchically contain others, and some elements are essentially freestanding, being created and manipulated independently of other elements. Characteristics of protean element are discussed, including the underlying object-oriented structure, the relationship between elements and graphics, and functions associated with the objects. A scheme is explained whereby all parts of a design can be represented even when the design includes extremely unusual forms not conforming to predictable classes of elements. The necessary support framework is also discussed; general flow of the system and mechanisms for viewing the model and editing subcomponents are explained. The current status of the project, and intentions for future work are discussed. The project has been partially implemented, and the necessary framework to support the system is mostly complete.

series ACADIA
email
last changed 2022/06/07 07:52

_id 15
authors Kensek, Karen
year 1998
title Reconstruccion Digital de Arquitectura: Un Metodo de EnseÒanza en Modelaje, Rendering, y Animacion (Digital Reconstruction of Architecture: A Method of Training in Modelling, Rendering and Animation)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 132-139
summary Throughout time, scholars have been resurrecting the architecture of past ages, Sir Arthur Evans with the Palace of Knossos in Crete, Heinrich Schliemann with the ruins of Troy, and Thor Hyerdahl with the Kontiki and Ra ship reconstructions. Digital reconstruction provides a powerful means to portray architecture and environments that no longer exist; structures that exist in a decayed form can be restored to an appearance of their former condition; and artist's visions that never existed can be reinterpreted in three-dimensions. These types of projects are highly suitable for teaching students, especially in advanced classes, how to use computer graphics for modeling, rendering, and animation. It is often difficult to gather accurate geometric and texture data and the information that is available is often ambiguous or even contradictory. The ambiguity of the information forces the students to truly study and attempt to comprehend what they are trying to model. Indeed, working with incomplete and contradictory graphical information is a normal part of architectural practice that one often has to deal with in the early stages of design
series SIGRADI
email
last changed 2016/03/10 09:53

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 634d
authors Seebohm, Thomas and Van Wyk, Skip (Eds.)
year 1998
title Digital Design Studios: Do Computers Make a Difference? [Conference Proceedings]
source ACADIA Conference Proceedings / ISBN 1-880250-07-1 / Québec City (Canada) October 22-25, 1998, 383 p.
doi https://doi.org/10.52842/conf.acadia.1998
summary With an inevitability that is the beyond the control of architecture faculty everywhere, computers are being increasingly used in design studios. As student ownership of computers proliferates and architectural firms begin to use computers for design as well as drafting, the momentum will accelerate. The question is whether the use of computers in design studios makes a difference and what sort. Moreover, if it does make a difference, should it just be allowed to happen or should the momentum be guided by studio teachers skilled in computing. Does the use of computers in studios demand a special pedagogy that goes beyond teaching the use of the software and hardware? Are there design approaches that need to be taught in order to take advantage of the strengths of computers in design rather than attempt to make computers follow the paths trodden by manual design techniques? The question is critical because, as yet, we know very little about how computers can truly enable design, how computers can help us conceive design hypotheses, structure alternatives and simulations, and evaluate alternatives. As yet we have no body of recorded evidence to demonstrate how computer-based design studios produce work that is different from or better than traditional design, except, perhaps, in slickness of the images. Is it only in modeling and rendering final images that computers are useful or are there advantages in the use of computers through all stages design. If so what are they? In recent years many non-ACADIANS have become involved in using computers in design studios. Do we use design computing differently? Do we judge our successes differently? Do we have different expectations than these colleagues. And, even more interesting , what do they perceive as our experience and direction?
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id a96f
id a96f
authors Clayton, M., Johnson, R., Song, Y and Al-Qawasmi, J.
year 1998
title Delivering Facility Documentation using Intranet Technology
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 240-253
doi https://doi.org/10.52842/conf.acadia.1998.240
summary Intranet technologies present new opportunities for delivering facility documentation for use in facility management. After the design stage, building documentation is reused to support construction and then facility operation. However, a common perception is that construction documents and as-built drawings are less than optimal for reuse to support operations. We have conducted a study of facility management processes and the information content of facility documentation in the context of information technologies that are emerging into the marketplace. The study provides guidance for facility managers who are implementing and fielding new information technology systems. A better understanding of information needs during operations may also help designers to better structure their own documents for reuse. An analysis of documents that are used throughout the life cycle of facilities has led us to a characterization of operations documents that are distinct from design drawings, record drawings or as-built drawings. From an analysis of facility management processes, we have identified different roles for facility documentation in those processes. Facility documentation may be used as a resource, as input, or as output. Furthermore, from interviews of facility management personnel, we identified facility information that was rated high in importance and low in satisfaction that might be targeted when implementing a facility information system. We prepared software demonstrations that show how the information may be extracted from drawings, entered into databases and then retrieved via Web and CAD interfaces. We suggest that operations documents consist of a variety of information types and require several kinds of information tools, including databases, CAD drawings and hypertext. Intranet technologies, databases and CAD software can be integrated to achieve facility management systems that address shortcomings in current facility management operations. In particular, intranet technologies provide improved accessibility to information for facility management customers and occasional users of the systems. Our study has produced recommendations based upon utility and ease-of-implementation for delivery of information from the design team to the owner, and among personnel during operation of the facility.

series ACADIA
email
last changed 2022/06/07 07:56

_id c88d
authors Dave, Bharat and Danahy, John
year 1998
title Virtual Study Abroad and Exchange Studio
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 100-115
doi https://doi.org/10.52842/conf.acadia.1998.100
summary The digital design studio has an area of application where conventional media are incapable of being used; collaboration in learning, design and dialogue with people in places other than where one lives. This distinctive opportunity has lead the authors to explore a form of design brief and virtual design studio (VDS) format not well addressed in the literature. Instead of sharing the same design brief, students in this alternative format design a project in the other students’ city and do not collaborate on the same design. Collaboration with other students takes the form of teaching each other about the city and culture served by the design. The authors discovered these studios produce a focus on site context that serves our pedagogical objectives–a blend of architectural, landscape architectural and urban design knowledge. Their students use a range of commercial CAD and computer supported collaborative work (CSCW) software common to that used in many VDS experiments reported on in the literature. However, this conventional use of technology is contrasted with a second distinctive characteristic of these studios, the use of custom software tools specifically designed to support synchronous and asynchronous three-dimensional model exchange and linked attribute knowledge. The paper analyzes some of the virtual design studio (VDS) work between the Swiss Federal Institute of Technology, the University of Toronto, and the University of Melbourne. The authors articulate a framework of VDS dimensions that structures their teaching and research.

series ACADIA
email
last changed 2022/06/07 07:55

_id 4942
authors Gardner, Brian M.
year 1998
title The Grid Sketcher: An AutoCAD Based Tool for Conceptual Design Processes
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 222-237
doi https://doi.org/10.52842/conf.acadia.1998.222
summary Sketching with pencil and paper is reminiscent of the varied, rich, and loosely defined formal processes associated with conceptual design. Architects actively engage such creative paradigms in their exploration and development of conceptual design solutions. The Grid Sketcher, as a conceptual sketching tool, presents one possible computer implementation for enhancing and supporting these processes. It effectively demonstrates the facility with which current technology and the computing environment can enhance and simulate sketching intents and expectations. One pervasive and troubling undercurrent, however, is the conceptual barrier between the variable processes of human thought and those indigenous to computing. Typically with respect to design, the position taken is that the two are virtually void of any fundamental commonality. A designer’s thoughts are intuitive, at times irrational, and rarely follow consistently identifiable patterns. Conversely, computing requires predictability in just these endeavors. Computing is strictly an algorithmic process while thought is not always so predictable. Given these dichotomous relationships, the computing environment, as commonly defined, cannot reasonably expect to mimic the typically human domain of creative design. In this context, this thesis accentuates the computer’s role as a form generator as opposed to a form evaluator. The computer, under the influence of certain contextual parameters can, however, provide the designer with a rich and elegant set of forms that respond through algorithmics to the designer’s creative intents. The software presented in this thesis is written in AutoLISP and exploits AutoCAD’s capacious 3D environment. Designs and productions respond to a bounded framework where user selected parametric variables of size, scale, proportion, and proximity, all which reflect contextual issues, determine the characteristics of a unit form. Designer selected growth algorithms then arbitrate the spatial relationships between the unit forms and their propagation through the developing design. While the Sketcher implements only the GRID as an organizational discipline, many other paradigms are possible. Within this grid structure a robust set of editing features, supported by the computer’s inherent speed, allows the designer to analyze successive productions while refining ever more complex solutions. Through creative manipulation of these algorithmic structures ideas eventually coalesce to formalize images that represent a given design problem’s solution set.

series ACADIA
email
last changed 2022/06/07 07:51

_id cfad
authors Kurmann, David
year 1998
title Sculptor - How to Design Space?
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 317-326
doi https://doi.org/10.52842/conf.caadria.1998.317
summary Architects face a significant lack of computer tools that truly support them in the early, conceptual stages of design. In this paper, we take a look at the reasons for that and propose some solutions. We introduce new human-machine interaction methods that do differ from construction based approaches. We define new spatial interface paradigms as well as new objects and their behavior. Finally we present their implementation in ‘Sculptor’ - a modeling prototype to enable designing in space with space.
keywords Spatial Modeling, Human Computer Interface, Cooperative Design
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:52

_id 280e
authors Park, Taeyeol and Miranda, Valerian
year 1998
title Development of a Computer-Assisted Instruction System for Information Communication in Design Studio
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 47-56
doi https://doi.org/10.52842/conf.caadria.1998.047
summary Design studio is the core of architectural education. An essential part of designing is using information and knowledge obtained from non-studio courses. However, as the complexity of buildings increases, the amount of this information increases and there is a danger that essential design information may be ruined and overlooked because of time and place constraints. As a means to bridge the gap between non-studio courses and design studios, some architectural educators suggest that design studios should bring knowledge to students in the process of designing so that they can apply this knowledge to their design. Most architectural studios, however, do not do enough to bring knowledge systematically into design projects when appropriate. Design projects generate need for additional knowledge about a number of topics, but too few studios systematically make knowledge available. Design studios should consider ways in which knowledge for design projects is integrally made available at the appropriate time. This paper describes a model for the delivery of design studio information which can be integral with any design projects. The model is demonstrated by a computer-assisted instruction (CAI) system designed and placed on the Web to introduce basic structural concepts and to teach an in-depth concept of spatial composition in a design studio and reports on its development, implementation, and testing. The system relies on many issues, such as access to relevant information, links between lessons for different subjects, representation of various design concepts, effective instructional methods for learning concepts, etc., which might be critical elements of designing an information communication system for design studio instruction. This paper tests the effectiveness of the system based on the results from responses of design studio students and observations of the researcher and the studio instructor, and concludes with the information that we hope will be useful in developing CAI materials for reflecting and acquiring information on a number of different subjects that have relevance to architectural design.
keywords Computer-assisted Instruction (CAI), Design Studio Teaching, Information Delivery System
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:59

_id c30e
authors Schweikhardt, Eric and Gross, Mark
year 1998
title Digital Clay: Deriving Digital Models from Freehand Sketches
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 202-211
doi https://doi.org/10.52842/conf.acadia.1998.202
summary During the initial stages of design, it is not uncommon to find an architect scribbling furiously with a thick pencil. Later in the design process, however, one might not be surprised to encounter the same individual in front of a computer monitor, manipulating three dimensional models in a series of activities that seem completely divorced from their previous efforts. Armed with evidence that sketching is an effective design method for creative individuals, we also recognize that modeling and rendering applications are invaluable design development and presentation tools, and we naturally seek a connection between these methodologies. We therefore present Digital Clay, a working prototype of a sketch recognition program that interprets gestural and abstracted projection drawings and constructs appropriate three dimensional digital models.

series ACADIA
email
last changed 2022/06/07 07:56

_id ddss9856
id ddss9856
authors Suter, Georg and Mahdavi, Ardeshir
year 1998
title Generation and communication of design information:a building performance simulation perspective
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary There is general agreement that the process of design and construction of buildings typically involves multiple players. This has been the impetus to develop concepts for computational environments that would supportcollaborative design. While there has been considerable progress with regard to hardware and electronic communication, the underlying representations of design ideas and artifacts have not kept pace with thisprogress. In this paper we deal with this problem not from a global conceptual perspective, but rather from the specific point of view of those designers who use design representation toward extraction and manipulation of specialized technical information. For example, engineers in various fields of building technology require a rich representation of building information in terms of geometry (with special focus on topology), materials, systems attributes, etc. We argue that the current building analysis tools do not operate on the basis of such rich informational representations. Instead the needed information is often assembled on an ad hoc basis from various non-integrated informational sources. We review three representations as they are implemented in commercial or research systems and explore their potential for communicating design information to computational building analysis tools. Based on this review, we describe desirable characteristics of more sophisticated building representations.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_242548 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002