CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 553

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e513
authors Chaikin, George
year 1998
title The Computer and the Studio
doi https://doi.org/10.52842/conf.ecaade.1998.051
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 51-54
summary The studio is the primary place of architectural education - the place where the warp of representation and the weft of technique are woven together. Architecture is taught as a domain of ideas, ideas about how and why buildings are built, about the dialectic between concept and materiality. To the architectural student, the drawing is the exemplar of the quality of work he or she will expect in the final construction process. As such, it is very important that the student appreciate the "materiality" of the work to be realized, and this is best done through the education of the whole person, of the entire cognitive mechanism, which most certainly includes the hands. We feel strongly that the student must engage in the creative process in a profoundly physical way, must learn the art and joy of making things, and only then can she or he appreciate the representational abstraction offered by the computer.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:55

_id 8b9d
authors Corrao, R. and Fulantelli, G.
year 1998
title Cognitive Accessibility to Information on the Web: Insights from a System for Teaching and Learning Architecture through the Net ShortPapers: Design Methodology for Universal Access
source Proceedings of the 4th ERCIM Workshop on "User Interfaces forAll" 1998 n.14 p.6 ERCIM
summary The question of accessibility to the Web takes on a special meaning in educational settings where access to information requires cognitive elaboration of the page contents. It is, therefore, a matter of "cognitive access" to the Web. The main efforts of the designers of Web Based Instruction (WBI) environments to encourage cognitive access are usually aimed at the organisation and presentation of Web documents and at specific cues which can improve the user's interaction, orientation and navigation through the pages. However, it is possible to improve this high-level access to the information by supporting study activities through specific "Working tools" which can be implemented in the Web environment. In this paper we report on the design solutions we have adopted to provide cognitive access to a WBI environment for university students studying Architecture and Town Planning. In particular, we introduce "Working tools" that can be used to support flexible and effective study activities. The adopted design solutions provide different classes of users (not only students) with different access facilities. Finally, it should be noted that the methodologies of the design of WBI systems should deal with this kind of high level access and support it through specific solutions at interface and implementation levels.
series other
last changed 2002/07/07 16:01

_id 05d5
authors Corrao, R. and Fulantelli, G.
year 1998
title Cognitive accessibility to information on the Web: insights from a system for teaching and learning Architecture through the Net
source AA VV, Towards an Accesible Web, Proceedings of the IV ERCIM Workshop “User Interfaces for All”, Långholmen-Stockholm
summary The question of accessibility to the Web takes on a special meaning in educational settings where access to information requires cognitive elaboration of the page contents. It is, therefore, a matter of "cognitive access" to the Web. The main efforts of the designers of Web Based Instruction (WBI) environments to encourage cognitive access are usually aimed at the organisation and presentation of Web documents and at specific cues which can improve the user's interaction, orientation and navigation through the pages. However, it is possible to improve this high-level access to the information by supporting study activities through specific "Working tools" which can be implemented in the Web environment. In this paper we report on the design solutions we have adopted to provide cognitive access to a WBI environment for university students studying Architecture and Town Planning. In particular, we introduce "Working tools" that can be used to support flexible and effective study activities. The adopted design solutions provide different classes of users (not only students) with different access facilities. Finally, it should be noted that the methodologies of the design of WBI systems should deal with this kind of high level access and support it through specific solutions at interface and implementation levels.
series other
last changed 2003/04/23 15:50

_id c3e0
authors Dorsey, J. and McMillan, L.
year 1998
title Computer Graphics and Architecture: State of the Art and Outlook for the Future
source Computer Graphics, Vol 32, No 1, Feb 1998. pp. 45-48
summary During the three decades since Ivan Sutherland introduced the Sketchpad system, there has been an outpouring of computer graphics systems for use in architecture. In response to this development, most of the major architectural firms around the world have embraced the idea that computer literacy is mandatory for success. We would argue, however, that most of these recent developments have failed to tap the potential of the computer as a design tool. Instead, computers have been relegated largely to the status of drafting instruments, so that the "D" in CAD stands for drafting rather than design. It is important that future architectural design systems consider design as a continuous process rather than an eventual outcome.The advent of computer graphics technology has had an impact on the architectural profession. Computer graphics has revolutionized the drafting process, enabling the rapid entry and modification of designs. In addition, modeling and rendering systems have proven to be invaluable aids in the visualization process, allowing designers to walk through their designs with photorealistic imagery. Computer graphics systems have also demonstrated utility for capturing engineering information, greatly simplifying the analysis and construction of proposed designs. However, it is important to consider that all of these tasks occur near the conclusion of a larger design process. In fact, most of the artistic and intellectual challenges of an architectural design have already been resolved by the time the designer sits down in front of a computer. In seeking insight into the design process, it is generally of little use to revisit the various computer archives and backups. Instead, it is best to explore the reams of sketches and crude balsa models that fill the trash cans of any architectural studio.In architecture, as in most other fields, the initial success of computerization has been in areas where it frees humans from tedious and mundane tasks. This includes the redrawing of floor plans after minor modifications, the generation of largely redundant, yet subtly different engineering drawings and the generation of perspective renderings.We believe that there is a largely untapped potential for computer graphics as a tool in the earlier phases of the design process. In this essay, we argue that computer graphics might play a larger role via applications that aid and amplify the creative process.
series journal paper
last changed 2003/04/23 15:50

_id aac0
authors Garcia, Renato
year 1998
title Structural Feel or Feelings for Structure? - Stirring Emotions through the Computer Interface in Behaviour Analysis of Building Structures
doi https://doi.org/10.52842/conf.caadria.1998.163
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 163-171
summary The use of computers in the analysis of architectural structures has at present become indispensable and fairly routine. Researchers & professionals in architecture and engineering have taken advantage of current computer technology to develop richer and more comprehensive interactive interfaces in systems designed to analyse structural behaviour. This paper discusses a research project which attempts to further enrich such computer interfaces by embodying emotion or mood (affective) components into them and assessing the effects of incorporating these into multimodal learning modules for students of architecture at the University of Hong Kong. Computer structural analysis is most often used to determine the final state of a structure after full loading, but can also be used very ably to depict the time-history behaviour of a structure. The time-dependent nature of this process of behaviour provides an excellent opportunity to incorporate emotion cues for added emphasis and reinforcement. Studying time-history behaviour of structures is a vital part of classroom learning in structures and this why such emotion cues can have significant impact in such an environment. This is in contrast to the confines of professional engineering practices where these cues may not be as useful or desirable because oftentimes intermediate time history data is bypassed as a blackbox and focus is placed primarily on bottomline analysis results. The paper will discuss the fundamental basis for the establishment of emotional cues in this project as well as it's implementation-which consists mainly of two parts. The first involves 'personifying' the structure by putting in place a structure monitoring system analogous to human vital signs. The second involves setting up a 'ladder' of emotion states (which vary from feelings of serenity to those of extreme anxiety) mapped to the various states of a structures stability or condition. The paper will further elaborate on how this is achieved through the use of percussion, musical motifs, and chord progression in resonance with relevant graphical animations. Initially in this project, emotion cues were used to reinforce two structural behaviour tutoring systems developed by this author (3D Catenary Stuctures module & Plastic Behaviour of Semi-rigid Steel Frames module). These modules were ideal for implementing these cues because both depicted nonlinear structural behaviour in a mainly time-history oriented presentation. A brief demonstration of the actual learning modules used in the project study will also be presented together with a discussion of the assessment of it's effectiveness in actual classroom teaching.
keywords Affective Interfaces, Human-Computer Interaction, Computer-Aided-Engineering
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:50

_id 650c
authors Porada, S.
year 1998
title Ouvoir - Of the Potential Architecture
source Cyber-Real Design [Conference Proceedings / ISBN 83-905377-2-9] Bialystock (Poland), 23-25 April 1998, pp. 155-161
summary Calculations are used to forecast urban flows of population, development of various activities, demography, and many other architectural programme constrains, and have been spontaneously the first field of computer intervention in urban and architectural project design. By analogy to engineering where computation is the base of decision making, architectural design process is seen as a problem solving process. <> constrains computer aided computation is seen as Computer Aided Architectural Design, CAAD. This way, a technological utopia called CAD in architecture is born. Nevertheless, the review of architectural design methods has clearly shown that programmatic models, since they are only used to evaluate spatial hypothesis, and do not have in themselves space production potentialities. In spite of the powerful methodological movement of the sixties, that have established this design constellation, the misunderstanding persists until now. Architect is a gestural and visual being. By using simultaneously metaphor, gesture and calculation, he calls for all his experiences and sensibility to realise plastic and poetic synthesis of form. To remedy to the major problem of the form synthesis, graphical instruments have been proposed. Why not utilise tools used in the field of engineering as computer aided drafting ? And so, computer aided drafting triumphaly entered the architectural design process. But, computer aided drafting is commonly seen as an instrument used on the - projection - stage, where drawings are produced for an already designed object. A new myth that assimilate architectural design to the drawing production activity arrives with the <>, containing thousands of drawings. All this aimed to facilitate, as it is proclaimed, communication between all the intervening in the project.
series plCAD
last changed 1999/04/08 17:16

_id 05ca
authors QaQish, R.
year 1998
title Assessing CAD Learning Environment and CAL Materials in Association with the Overall Effectiveness of CAD Integration Domains
doi https://doi.org/10.52842/conf.ecaade.1998.196
source Computerised Craftsmanship [eCAADe Conference Proceedings] Paris (France) 24-26 September 1998, pp. 196-207
summary This paper report on the findings of an empirical case study undertook at Mackintosh School of Architecture/ University of Glasgow study. The study investigated several questions concerning the efficiency of CAD teaching in the design studio in tandem with the CAD learning environment and materials. The study investigated the computer-aided learning in the AutoCAD course at Mackintosh School of Architecture using 35 students at the second year design studio as a vehicle. The methods of this investigation consisted of classroom observations and administering questionnaires to students. The objective of this study was to determine to what extent the CAD learning environment and administered materials were effective in generating supplementary strategies in the design studio. Another objective was to evaluate the computer lab as an optional design studio space in the future settings of schools of architecture. Principally, the study attempted to locate the areas where CAD teaching lapses in relation to the design studio. To arrive at this, several variables were investigated such as the levels of students? performance, attitudes and skills against the learning environment and the overall effectiveness of CAD. The findings of this study may provide some answers to the problems of CAD integration with the design studio. In addition, the questionnaire used in this case study may prove to be helpful as an evaluation tool of CAD courses when integrated with the design studio.
keywords CAD Environment, CAL Effectiveness, Attitude, Performance, Skills
series eCAADe
more http://www.paris-valdemarne.archi.fr/archive/ecaade98/html/40qaqish/index.htm
last changed 2022/06/07 08:00

_id 7561
authors Streitz, N. A., Gei_ler, J. and Holmer, T.
year 1998
title Roomware for Cooperative Buildings: Integrated Design of Architectural Spaces and Information Spaces
source N.A. Streitz, S. Konomi, and H-J Burkhardt (eds), Cooperative Buildings: Integrating Information, Organization, and Architecture, Proceedings of CoBuild‘98, Springer, pp. 4-21
summary In this paper, we introduce the concepts of "cooperative buildings" and "roomware" and place them in the context of the integrated design of real, physical, resp. architectural spaces and virtual, resp. digital information spaces. By "roomware" we mean computer-augmented things in rooms, like doors, walls, furniture, and others. The general approach is detailed via examples from the i-LAND project where we develop several "roomware" components in order to realize an interactive information and cooperation landscape, e.g. an innovative work environment for creativity teams. We describe the current realization of i-LAND which includes an interactive electronic wall, an interactive table, computer-augmented chairs, and a mechanism for assigning physical objects as representatives of information objects in the virtual world.
series other
last changed 2003/04/23 15:50

_id cf9d
authors Yeung, C., Cheung, L., Yen, J. and Cheng, C.
year 1998
title Virtual Classroom for Architecture
doi https://doi.org/10.52842/conf.caadria.1998.093
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 93-102
summary Over the past few years, we have seen that the evolution of the Internet and World Wide Web technologies have significantly enhanced the global communication and collaboration. People, no matter where they are, are virtually getting closer and closer. The barriers that came from time and distance have been partially removed by the use of such technologies. Internet and WWW are not just technology, they are an environment or space. With such breakthrough in technologies, a new paradigm in education is there. The education very differently from what we have now. This paper presents an Internet-based environment to support teaching and learning in architecture education. We will discuss the design concept and how to integrate the technology and knowledge-based techniques to implement the learning environment for architecture students. Architecture is a very specific discipline which consists of the knowledge from arts, sciences, engineering, and more. One of the focuses in architecture education is to teach how to express and communicate design ideas with the multimedia or other technologies, such as, virtual reality (VR). A case study presented in this paper is about how to deliver and present the ancient Chinese temples and its bracket set systems from the server to the browsers to support distance teaching. That is, students and teachers may not be in the same location, but they are able to watch the same objects and to exchange ideas. We will discuss how to use multimedia technologies to illustrate how a temple and its bracket set differ from dynasties to dynasties and introduce its basic properties to the viewers. Moreover, we will discuss how we organize and handle 3-dimensional objects with such system. Many people are still arguing about whether Internet-based teaching or a real classroom setting is better. We are not implying that Internet-based teaching is superior or predicting that it will dominate the teaching in the near future. However, we strongly believe that it is just another alternative to express and represent architectural thinking to over some of the barriers that come from time and distance. We believe, that it is always true, that the Internet-based teaching may provide both teachers and learners greater flexibility and to support more International collaboration. That is, regardless where the students or teachers are, they can always participate in learning or teaching and make teaching and learning much more rich and interesting.
keywords Virtual Classroom
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:57

_id 3
authors Andia, Alfredo
year 1998
title Computadoras y Arquitectura en la Era Digital (Computers and Architecture in the Digital Era)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 22-31
summary It seems that when architects think, and talk about computers, they only reflect on very narrow images of the phenomenon. Architects think that the impact of computers in their profession is only related to how PCs, CAD/CAM, networks, software, peripherals, can improve the way they work today. Architects, by enlarge, are unable to reflect beyond the screen of their computers and the wall of their offices when it comes to recognize the real consequences resulting from the new technological advances. In this paper we argue that we should think differently. We must recognize that computers are having much more profound impact on the profession. Computers - the technology of the fantastic, par excellence - are changing the city! They are fundamentally transforming the way we use space, and buildings! Computers are beginning to create new kinds of urban cultures and infrastructures. Building types such as offices, banks, retail spaces, and museums are being transformed into virtual workplaces, telecommuting centers, networks of automated teller machines, home banking, smart stores and multimedia experiences. Computers are transforming the concept of working, the concept of banking, the concept of shopping, etc. In the end, something fundamental about the architecture of these activities.
series SIGRADI
email
last changed 2016/03/10 09:47

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia03_047
id acadia03_047
authors Martens, B., Brown, A. and Turk, Z.
year 2003
title Automated Classification of CAAD-related Publications: Conditions for Setting-Up a Keywording System
doi https://doi.org/10.52842/conf.acadia.2003.365
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 365-371
summary This paper deals with the CUMINCAD-repository (Cumulative Index on CAD), which was set up in 1998 and has served the CAAD-community since then as an important source of archived domain related information. CUMINCAD contains over 5,000 entries in the form of publications in the field of Computer Aided Architectural Design. The number has been growing steadily over the years. To date only advanced search mechanisms have been provided to access these works. This may work out well for a just-in-time location of a reference, but is inadequate for just in case browsing through the history of CAAD. For such applications, a hierarchical browsing interface, like one in Yahoo or DMOZ.org is envisioned. This paper describes how the keyword categories were defined and how a moderate, distributed effort in defining the categories will allow machine-identified classification of the entire data set. The aim of the paper is to contribute to building up a wide spread consensus on what the appropriate keyword categories in CAAD are, and what sub-topics should sit below the main keyword categories.
keywords Web-based Bibliographic Database; Searchable Index; CAAD Research; Classification
series ACADIA
email
last changed 2022/06/07 07:59

_id 634d
authors Seebohm, Thomas and Van Wyk, Skip (Eds.)
year 1998
title Digital Design Studios: Do Computers Make a Difference? [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1998
source ACADIA Conference Proceedings / ISBN 1-880250-07-1 / Québec City (Canada) October 22-25, 1998, 383 p.
summary With an inevitability that is the beyond the control of architecture faculty everywhere, computers are being increasingly used in design studios. As student ownership of computers proliferates and architectural firms begin to use computers for design as well as drafting, the momentum will accelerate. The question is whether the use of computers in design studios makes a difference and what sort. Moreover, if it does make a difference, should it just be allowed to happen or should the momentum be guided by studio teachers skilled in computing. Does the use of computers in studios demand a special pedagogy that goes beyond teaching the use of the software and hardware? Are there design approaches that need to be taught in order to take advantage of the strengths of computers in design rather than attempt to make computers follow the paths trodden by manual design techniques? The question is critical because, as yet, we know very little about how computers can truly enable design, how computers can help us conceive design hypotheses, structure alternatives and simulations, and evaluate alternatives. As yet we have no body of recorded evidence to demonstrate how computer-based design studios produce work that is different from or better than traditional design, except, perhaps, in slickness of the images. Is it only in modeling and rendering final images that computers are useful or are there advantages in the use of computers through all stages design. If so what are they? In recent years many non-ACADIANS have become involved in using computers in design studios. Do we use design computing differently? Do we judge our successes differently? Do we have different expectations than these colleagues. And, even more interesting , what do they perceive as our experience and direction?
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id ddss9853
id ddss9853
authors Sidjanin, Predrag and Gerhardt, Waltraud
year 1998
title A design tool for analysis and visual quality control of urbanenvironments supported by object databases
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary In the paper, the main concepts about a design tool supported by an object database system will be described. The design tool should improve architectural design with respect to analysis and improving existing and planned urban environments regarding several quality criteria, especially those associated with visual aspects. Preconditions for defining the design tool's purpose are the determination of the "well-situated" urban elements, their impact on cognitive mapping, and the exploitation of thisknowledge on cognitive mapping for the improvement of urban environments. Cognitive mapping is a kind of representation of schematic knowledge that a person has about familiar environments. A cognitive map is stored information or knowledge about the purpose and function of the environment. This leads to the conclusion that an urban environment design which takes of the process of cognitive mapping into consideration, will be experienced by most of the people in the same way. Investigationsof this process result in a theoretical model of elements of urban environments, their relationships and their dependencies. The theoretical platform of the tool is based on design theory, cognitive science andcomputer science. Design theory and cognitive science will be used to develop the theoretical model. This theoretical model together with computer science will be the basis for tool development. The tooluses a schematic representation of urban environment, based partly on Lynch's theory of "urban form". Lynch's theory is crucial for the tool because it explains almost all elements of urban environments. Systematic investigation of urban environments and their characteristics are important for theoretical modeling as well as for the later computational modeling of the tool. The main computational support for the tool will be provided by an object database system, which helps to represent and to handle all the urban elements with their properties and relationships, with their natural semantics. The information represented in the database will be used to analyze urban environments as well as to improve andcontrol their visual quality.
series DDSS
email
last changed 2003/08/07 16:36

_id 4fe4
authors Spiridonidis, Constantin and Voyatzaki, Maria
year 1998
title From Charming Technology to Teaching Methodology
doi https://doi.org/10.52842/conf.ecaade.1998.147
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 147-156
summary This paper intends to present the educational aims, objectives and results of our pedagogic methods to teach design with the aid of technology. The vehicle to fulfil this intention ran in a module form in the Schools of Architecture of Thessaloniki, Greece and of Plymouth, UK. The primary aim of the module introduced by the experiment was to generate the grounds and to give rise to opportunities so that the students could have the possibility to study through well-known contemporary architectural examples the relationship between thinking of and about architecture and doing architecture. The principal means to present this study was the computer. Some of the emerging questions from this experiment were what educational practices should we develop in order to support such an approach in the studio? What role should new technologies play in such an attempt? The experiment attempted to respond to these questions. In the module we attempted to implement our methodological viewpoint on the teaching of design based on the pedagogic starting point of the method of critical commentary. A brief review on the history of design teaching is described in order that our argument and chosen teaching methods to become clear. The theoretical and ideological content of our design teaching methods is described in relation to the module and in relation to the outcome.

series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:56

_id 297e
authors Van Asperdt, Anita and Diamond, Beth
year 1998
title Integrating Digital Media in the Lanscape Architecture Studio: Overlaying Media and Process
doi https://doi.org/10.52842/conf.acadia.1998.074
source Digital Design Studios: Do Computers Make a Difference? [ACADIA Conference Proceedings / ISBN 1-880250-07-1] Québec City (Canada) October 22-25, 1998, pp. 74-86
summary For landscape architecture students beginning to experiment with computer generated imagery, the focus should be on integrating digital media in a comprehensive manner, throughout various phases of the design process. Digital media exercises must be developed in such a manner that they support, express and enhance the design content of a studio project in conjunction with the chosen design process. In a beginning-level studio, digital media is best explored through easy-to-learn applications in a structured yet flexible studio environment. One powerful way to integrate digital media with design inquiry in a comprehensive and reciprocal manner is the electronic overlay of information and poetic impressions. This method takes on particular relevance in dealing with the multiple issues that face landscape architects today.

series ACADIA
email
last changed 2022/06/07 07:58

_id 9
authors Stipech, Alfredo
year 1998
title Un Nuevo Horizonte Arquitectonico, Productivo e Intelectual (A New Architectural, Productive and Intelectual Horizon)
source II Seminario Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings / ISBN 978-97190-0-X] Mar del Plata (Argentina) 9-11 september 1998, pp. 76-83
summary This work presents the pedagogical experience of a Design Workshop that investigated the impact of the digital and analogic means on the architectonic design process This work was based on the research of Dr. Arch. Julio BermÝdez who also directed this workshop in 1997. This class was part of the Training Program organized by the "Centro de Informatica y Diseho" (CID) at the "Universidad Nacional del Litoral" FADU (Facultad de Arquitectura Diseho y Urbanismo) Santa Fe, Argentina and made possible by the ongoing International Program of Academic Exchange between the FADU and the (University of Utah Graduate School of Architecture (IPAE Project NO 4). The experimental studio utilized an architectural problem to study the procedural, technical, interpretative and theoretical issues associated with the relationship of contemporary media and design process. The pedagogical vehicle was a program that expresses in itself the meeting or collision between two cultures competing for dominance at the end of the millennium: the immemorial material culture (corporeal, tectonic) and the new and everyday more influent virtual culture (information, nets, media, simulation). The premise for the design process, communication and criticism was the constant migration between the digital and analog representation systems. Within this theoretical-practical context semantic aspects containing different representation modalities were used such as physical and electronic models along with systematic and sensitive drawings (manuals, pixels and with CAD). Hybrid interfaces took a leading role in the process since they allowed the communication between analog and digital media through the creative and technical interaction between scanner, video and computer. This architectural and media context generated an intense pedagogic environment fostering the development of creativity and a critical attitude while allowing concrete breakthroughs in the teaching process and format design. Our work reflects on these results showing examples of stud-go works and providing a final evaluation of this unique experience in Argentina.
series SIGRADI
email
last changed 2016/03/10 10:01

_id 62fa
authors Vasquez de Velasco, Guillermo P. and Clayton, Mark J.
year 1998
title Integrating Introductory CAAD Courses and Upper Level Electronic Design Studios
doi https://doi.org/10.52842/conf.ecaade.1998.157
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 157-164
summary Although the use of computers has become widespread among architecture students, their use in design studios often lacks integration. To gain maximum advantage from computers, design students must acquire a breadth and depth of knowledge that allows them to choose the right tools, integrate multiple technologies, and apply knowledge to new situations. It is not possible for students to gain all of this knowledge in an ad hoc way as part of a design studio. Thus, an introductory CAAD course is a necessary prerequisite for participation in design studios that employ computer methods. The paper presents the experience of two faculty members currently working on the integration of their second year introductory CAAD courses and their fourth year Electronic Design Studios. The paper describes the pedagogical methods used in the introductory CAAD courses, and shows how they serve as the foundation for exercises in upper level electronic design studios. The paper also presents plans for the implementation of distance education methodologies in the delivery of computing and studio courses. The paper ends by providing conclusions that address how the use of computer technology permits the addition of instructional objectives that go beyond those of conventional design studios.

series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:58

_id ddss9802
id ddss9802
authors Akin, O., Aygen, Z., Cumming, M., Donia, M., Sen, R. and Zhang, Y.
year 1998
title Computational Specification of Building Requirements in theEarly Stages of Design
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary We have been exploring computational techniques to help building designers to specify design requirements during the early stages of design. In the past, little has been accomplished in this area either in terms of innovative computational technologies or the improvement of design performance.The prospect of improving design productivity and creating a seamless process between requirements specification and formal design are our primary motivations. This research has been conducted as partof a larger project entitled SEED (Software Environment to Support Early Phases in Building Design). SEED features an open-ended modular architecture, where each module provides support for a design activity that takes place in early design stages. Each module is supported by a database to store and retrieve information, as well as a user interface to support the interaction with designers. The module described in this paper, SEED-Pro (the architectural programming module of SEED), is a workingprototype for building design requirements specification. It can be used by other modules in SEED or by design systems in other domains, such as mechanical engineering, civil engineering, industrial designand electrical engineering. Our approach to SEED-Pro is divided into two phases: core, and support functionalities. The core functionalities operate in an interactive mode relying on a case-based approach to retrieve and adapt complex specification records to the problem at hand. The supportfunctionalities include the case-base, the data-base, and the standards processing environment for building specification tasks. Our findings indicate that SEED-Pro: (1) is a tool that structures the unstructured domain of design requirements; (2) enables the integration of design requirements with the rest of the design process, (3) leads to the creation of complex case-bases and (4) enables the observation of their performance in the context of real world design problems.
series DDSS
last changed 2003/11/21 15:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_375865 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002