CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id c1b6
authors Ries, R.
year 1999
title Computational Analysis of the Environmental Impact of Building Designs
source Carnegie Mellon University, Pittsburgh
summary Concem for the environmental implications of human activities is becoming increasingly important to society. The concept of current development that does not compromise future generations! abilities to meet their needs is a goal for many communities and individuals (WCED 1987). These concerns require the evaluation and assessment of the potential environmental impact of human activities so that informed choices can be made. Building construction and operation activities are of significant importance in view of a) national and intemational economies, 6) resource consumption, c) human occupancy, and d) environmental impact. For example, in the United States the built environment represents an extensive investment, both as an annual expenditure and as an aggregate investment. In the mid-l980’s, up to 30% of new and remodeled buildings had indoor air quality related complaints. Buildings also consume approximately 35% of the primary energy in the U.S. every year, resulting in the release of 482 million metric tons of carbon in 1993. I Methods developed to assess the environmental impact of buildings and development patterns can and have taken multiple strategies. The most straightforward and simple methods use single factors, such as energy use or the mass of pollutant emissions as indicators of environmental performance. Other methods use categorization and weighting strategies. These gauge the effects of the emissions typically based on research studies and use a weighting or effect formulation to normalize, compare, and group emissions so that a scalar value can be assigned to a single or a set of emissions. These methods do not consider the characteristics of the context where the emissions occur.
series thesis:MSc
email
last changed 2003/02/12 22:37

_id 4a1a
authors Laird, J.E.
year 2001
title Using Computer Game to Develop Advanced AI
source Computer, 34 (7), July pp. 70-75
summary Although computer and video games have existed for fewer than 40 years, they are already serious business. Entertainment software, the entertainment industry's fastest growing segment, currently generates sales surpassing the film industry's gross revenues. Computer games have significantly affected personal computer sales, providing the initial application for CD-ROMs, driving advancements in graphics technology, and motivating the purchase of ever faster machines. Next-generation computer game consoles are extending this trend, with Sony and Toshiba spending $2 billion to develop the Playstation 2 and Microsoft planning to spend more than $500 million just to market its Xbox console [1]. These investments have paid off. In the past five years, the quality and complexity of computer games have advanced significantly. Computer graphics have shown the most noticeable improvement, with the number of polygons rendered in a scene increasing almost exponentially each year, significantly enhancing the games' realism. For example, the original Playstation, released in 1995, renders 300,000 polygons per second, while Sega's Dreamcast, released in 1999, renders 3 million polygons per second. The Playstation 2 sets the current standard, rendering 66 million polygons per second, while projections indicate the Xbox will render more than lOO million polygons per second. Thus, the images on today's $300 game consoles rival or surpass those available on the previous decade's $50,000 computers. The impact of these improvements is evident in the complexity and realism of the environments underlying today's games, from detailed indoor rooms and corridors to vast outdoor landscapes. These games populate the environments with both human and computer controlled characters, making them a rich laboratory for artificial intelligence research into developing intelligent and social autonomous agents. Indeed, computer games offer a fitting subject for serious academic study, undergraduate education, and graduate student and faculty research. Creating and efficiently rendering these environments touches on every topic in a computer science curriculum. The "Teaching Game Design " sidebar describes the benefits and challenges of developing computer game design courses, an increasingly popular field of study
series journal paper
last changed 2003/04/23 15:50

_id 221d
authors Lee, Sanghyun
year 1999
title Internet-based collaborative design evaluation : an architect's perspective
source Harvard University
summary This research aims at developing a design evaluation system that employs a Product Model as the logical basis for integrating building design and construction processes. The system is implemented with Java language, which allows the system to work over the Internet. Accordingly, the system helps architects to collaborate with remote participants. Thus, this design evaluation system is a building performance evaluator like DOE-2, RADIANCE, HVAC, and the Automated Building Code Checker. This research, however, is mainly concerned with an architect's view during the schematic design and design development stage, while the existing design evaluation systems cover other special consultants' views such as those of HVAC designers, structural engineers, and contractors. From an architect's view, this evaluation system checks the compliance of design objects represented by means of physical objects such as walls and windows and conceptual objects such as rooms as well, to the design criteria focused on accommodating human behavior, rather than other building performances such as sustaining building structures and maintaining indoor livability. As such, the system helps designers analyze and evaluate design solutions according to their original intent. The innovative points of this research lie in the following: (1) Unlike other inquiries, it addresses a systematic evaluation of building design from an architect's view focusing on the experiential quality of the built environment. This research demonstrates that such an evaluation becomes available by introducing human activity-based evaluation. (2) It can take a multi-agenda for several groups of different interests by providing an Aspect Model based on human activity-centered systematic translation of their design considerations and 3D model-based graphical representations into system readable ones. (3) As a result, it addresses the possibility of expanding the capability of the design evaluator from a mere code checker to a general design evaluator while simultaneously, enhancing the availability from stand alone to Internet based networking.
keywords Architectural Rendering; Data Processing; Evaluation; Buildings; Performance; World Wide Web; Internet
series thesis:PhD
last changed 2003/02/12 22:37

No more hits.

HOMELOGIN (you are user _anon_19030 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002