CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ga0015
id ga0015
authors Daru, R., Vreedenburgh, E. and Scha, R.
year 2000
title Architectural Innovation as an evolutionary process
source International Conference on Generative Art
summary Traditionally in art and architectural history, innovation is treated as a history of ideas of individuals (pioneers), movements and schools. The monograph is in that context one of the most used forms of scientific exercise. History of architecture is then mostly seen as a succession of dominant architectural paradigms imposed by great architectural creators fighting at the beginning against mainstream establishment until they themselves come to be recognised. However, there have been attempts to place architectural innovation and creativity in an evolutionary perspective. Charles Jencks for example, has described the evolution of architectural and art movements according to a diagram inspired by ecological models. Philip Steadman, in his book "The Evolution of Designs. Biological analogy in architecture and the applied arts" (1979), sketches the history of various biological analogies and their impact on architectural theory: the organic, classificatory, anatomical, ecological and Darwinian or evolutionary analogies. This last analogy "explains the design of useful objects and buildings, particularly in primitive society and in the craft tradition, in terms of a sequence of repeated copyings (corresponding to inheritance), with small changes made at each stage ('variations'), which are then subjected to a testing process when the object is put into use ('selection')." However, Steadman has confined his study to a literature survey as the basis of a history of ideas. Since this pioneering work, new developments like Dawkins' concept of memes allow further steps in the field of cultural evolution of architectural innovation. The application of the concept of memes to architectural design has been put forward in a preceding "Generative Art" conference (Daru, 1999), showing its application in a pilot study on the analysis of projects of and by architectural students. This first empirical study is now followed by a study of 'real life' architectural practice. The case taken has a double implication for the evolutionary analogy. It takes a specific architectural innovative concept as a 'meme' and develops the analysis of the trajectory of this meme in the individual context of the designer and at large. At the same time, the architect involved (Eric Vreedenburgh, Archipel Ontwerpers) is knowledgeable about the theory of memetic evolution and is applying a computer tool (called 'Artificial') together with Remko Scha, the authoring computer scientist of the program who collaborates frequently with artists and architects. This case study (the penthouse in Dutch town planning and the application of 'Artificial') shall be discussed in the paper as presented. The theoretical and methodological problems of various models of diffusion of memes shall be discussed and a preliminary model shall be presented as a framework to account for not only Darwinian but also Lamarckian processes, and for individual as well as collective transmission, consumption and creative transformation of memes.
keywords evolutionary design, architectural innovation, memetic diffusion, CAAD, penthouses, Dutch design, creativity, Darwinian and Lamarckian processes
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9922
id ga9922
authors Annunziato, M. and Pierucci, P.
year 1999
title The Art of Emergence
source International Conference on Generative Art
summary Since several years, the term emergence is mentioned in the paradigm of chaos and complexity. Following this approach, complex system constituted by multitude of individual develop global behavioral properties on the base of local chaotic interactions (self-organization). These theories, developed in scientific and philosophical milieus are rapidly spreading as a "way of thinking" in the several fields of cognitive activities. According to this "way of thinking" it is possible revise some fundamental themes as the economic systems, the cultural systems, the scientific paths, the communication nets under a new approach where nothing is pre-determined, but the global evolution is determined by specific mechanisms of interaction and fundamental events (bifurcation). With a jump in scale of the life, also other basic concepts related to the individuals as intelligence, consciousness, psyche can be revised as self-organizing phenomena. Such a conceptual fertility has been the base for the revision of the artistic activities as flexible instruments for the investigation of imaginary worlds, metaphor of related real worlds. In this sense we claim to the artist a role of "researcher". Through the free exploration of new concepts, he can evoke qualities, configurations and hypothesis which have an esthetical and expressive value and in the most significant cases, they can induce nucleation of cultural and scientific bifurcation. Our vision of the art-science relation is of cooperative type instead of the conflict of the past decades. In this paper we describe some of the most significant realized artworks in order to make explicit the concepts and basic themes. One of the fundamental topics is the way to generate and think to the artwork. Our characterization is to see the artwork not as a static finished product, but as an instance or a dynamic sequence of instances of a creative process which continuously evolves. In this sense, the attention is focused on the "generative idea" which constitutes the envelop of the artworks generable by the process. In this approach the role of technology (computers, synthesizers) is fundamental to create the dimension of the generative environment. Another characterizing aspect of our artworks is derived by the previous approach and specifically related to the interactive installations. The classical relation between artist, artwork and observers is viewed as an unidirectional flux of messages from the artist to the observer through the artwork. In our approach artist, artwork and observer are autonomous entities provided with own personality which jointly intervene to determine the creative paths. The artist which generate the environment in not longer the "owner" of the artwork; simply he dialectically bring the generative environment (provided by a certain degree of autonomy) towards cultural and creative "void" spaces (not still discovered). The observers start from these platforms to generate other creative paths, sometimes absolutely unexpected , developing their new dialectical relations with the artwork itself. The results derived by these positions characterize the expressive elements of the artworks (images, sequences and sounds) as the outcomes of emergent behavior or dynamics both in the sense of esthetical shapes emergent from fertile generative environments, either in terms of emergent relations between artist, artwork and observer, either in terms of concepts which emerge by the metaphor of artificial worlds to produce imaginary hypothesis for the real worlds.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f51a
authors Del Pup, Claudio
year 1999
title Carbon Pencil, Brush and Mouse, Three Tools in the Learning Process of New University Art Designers
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 420-425
summary This article develops the introduction of computer technologies in the fine arts environment the use of these new tools, sharing the process of creation and interacting at the same level with older technics, breaks the myth of technology and tries to reach the right place according to current or modern advances. As an introduction, it explains the insertion in the current courses of study of the "computer languages area", its implementation, present situation and future stages. An important point we have developed is the teaching methodology, to solve the transition of those who, challenging their investigations in different areas, like fire arts, graphic arts, film or video, need the support of computers. The first steps consist in designing sample courses, which allow the measurement of results, the definition of concepts like extension, capacities, teaching hours and the most important, a methodology to share the enthusiasm of creation with the difficulties of learning a new technique it is necessary to discover limits, to avoid easy results as a creative tool one of the most important problems we have faced is the necessity of coordinating the process of creation with the individual time of a plastic artist, finding the right way that allows the integration of all the group, minimizing desertion and losing of motivation. Two years later, the first results in the field of digital image investigations and assistance in form design. Volume as a challenge and solutions supported in techniques of modeling in 3D (experiences of modeling a virtual volume from a revolution profile, its particular facts and the parallelism with potter's lathe the handling of image as the most important element, as an work of art itself, but also as a support in the transmission of knowledge (design of a CD as a tool for the department of embryology of medical school with the participation of people from the medical school, engineering school and school of fine arts). Time as a variable, movement, animation and its techniques, multimedia (design of short videos for the 150th anniversary of the Republic University). Conclusions, good hits, adjustments, new areas to include, problems to solve, the way of facing a constantly evolving technology.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 837b
authors Elger, Dietrich and Russell, Peter
year 2000
title Using the World Wide Web as a Communication and Presentation Forum for Students of Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.061
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 61-64
summary Since 1997, the Institute for Industrial Building Production (ifib) has been carrying out upper level design studios under the framework of the Netzentwurf or Net-Studio. The Netzentwurf is categorized as a virtual design studio in that the environment for presentation, criticism and communication is web based. This allows lessons learned from research into Computer Supported Cooperative Work (CSCW) to be adapted to the special conditions indigenous to the architectural design studio. Indeed, an aim of the Netzentwurf is the creation and evolution of a design studio planing platform. In the Winter semester 1999-2000, ifib again carried out two Netzentwurf studios. involving approximately 30 students from the Faculty of Architecture, University of Karlsruhe. The projects differed from previous net studios in that both studios encompassed an inter-university character in addition to the established framework of the Netzentwurf. The first project, the re-use of Fort Kleber in Wolfisheim by Strasbourg, was carried out as part of the Virtual Upperrhine University of Architecture (VuuA) involving over 140 students from various disciplines in six institutions from five universities in France, Switzerland and Germany. The second project, entitled "Future, Inc.", involved the design of an office building for a scenario 20 years hence. This project was carried out in parallel with the Technical University Cottbus using the same methodology and program for two separate building sites.
keywords Virtual Design Studios, Architectural Graphics, Presentation Techniques
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id b0c3
authors Flanagan, Robert
year 1999
title Designing by Simulation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 25-30
summary This article evaluates ‘simulation’ as a contributing factor in architectural design. While computers enhance simulation, they have yet to transform the art of architecture. A partial explanation is found at the extremes of design processes: Gaudí’s Sagrada Família Cathedral of Barcelona is an empiricist’s culminating achievement -- faith expressed in stone. By contrast, SOM’s Sear’s Tower of Chicago is the modernist monument to rational process -- (financial) faith engineered in steel and glass. Gaudí employed an understanding of the heritage of stone and masonry to fashion his design while SOM used precise relationships of mathematics and steel. However, the designs in both the Sear’s Tower and Sagrada Família are restricted by the solutions inherent in the methods. In contrast, student designs often have no inherent approach to building. While the solution may appear to be evident, the method must often be invented; this is potentially more costly and complex than the design itself. This issue is not new to computers, but its hyper--reality is potentially more complex and disruptive. In evaluating the role of computer simulation in architectural design, this article employs two methods: 1.) Exoskeletal design: A limited collection of connected plates is formed and designed through warping, bending and forming. Reference architect Buckminster Fuller. 2.) Endoskeletal design: Curtain wall construction is taken to its minimalist extreme, using pure structure and membrane. Reference artist Christo.
series SIGRADI
email
last changed 2016/03/10 09:52

_id ae38
authors Jabi, Wassim
year 1999
title Integrating Databases, Objects and the World-Wide Web for Collaboration in Architectural Design
source Proceedings of the focus symposium: World Wide Web as Framework for Collaboration in conjunction with the 11th International Conference on Systems Research, Informatics and Cybernetics, The International Institute for Advanced Studies in Systems Research
summary Architectural design requires specialized vertical knowledge that goes beyond the sharing of marks on paper or the multi-casting of video images. This paper briefly surveys the state-ofthe- art in groupware and outlines the need for vertical and integrated support of synchronous and asynchronous design collaboration. The paper also describes a software prototype (WebOutliner) under development that uses a three-tier persistent object-oriented, web-based technology for a richer representation of hierarchical architectural artifacts using Apple’s WebObjects technology. The prototype contributes to earlier work that defined a framework for a shared workspace consisting of Participants, Tasks, Proposals, and Artifacts. These four elements have been found through observation and analysis to be adequate representations of the essential components of collaborative architectural design. These components are also hierarchical which allows users to filter information, copy completed solutions to other parts of the program, analyze and compare design parameters and aggregate hierarchical amounts. Given its object orientation, the represented artifacts have built-in data and methods that allow them to respond to user actions and manage their own sub-artifacts. In addition, the prototype integrates this technology with Java tools for ubiquitous synchronous web-based access. The prototype uses architectural programming (defining the spatial program of a building) and early conceptual design as examples of seamlessly integrated groupware applications.
keywords Computer Supported Collaborative Design, WebObjects, Synchronous and Asynchronous Collaboration, Java Applets, Application Server, Web-based Interface
series other
email
last changed 2002/03/05 19:55

_id sigradi2005_097
id sigradi2005_097
authors Luhan, Gregory A.
year 2005
title At Full-Scale | From Installation to Inhabitation
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 97-102
summary In 1999, the University of Kentucky (then the College of Architecture, now the College of Design-School of Architecture) established a Digital Design Studio to combine the strong tradition of handcrafting in the existing design program with those technologically sophisticated tools shaping the profession for the 21st century. Over a six-year period, this all-digital design studio has developed from a pedagogical model for developing new different ways of seeing and making architecture to a proof-of-concept real-world experience to coalesce state-of-the-art visualization techniques with current expectations of practice. Creating dynamic links between students, industry, and the profession has enabled the School of Architecture to provide leadership for practicing architects, to create an effective dialogue between industrial and design professionals, and to incorporate successfully leading-edge design pedagogy with the more technological applications that will shape the future of architecture practice. The materials presented here reflect a sequence of comprehensive digital projects produced under my direction from 1999 through 2005.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga9905
id ga9905
authors Maldonado, Gabriel
year 1999
title Generating digital music with DirectCsound & VMCI
source International Conference on Generative Art
summary This paper concerns two computer-music programs: DirectCsound, a real-time version of the well-known sound-synthesis language Csound, and VMCI, a GUI program that allow the user to control DirectCsound in real-time. DirectCsound allows a total live control of the synthesis process. The aim of DirectCsound project is to give the user a powerful and low-cost workstation in order to produce new sounds and new music interactively, and to make live performances with the computer. Try to imagine DirectCsound being a universal musical instrument. VMCI (Virtual Midi Control Interface) is a program which allows to send any kind of MIDI message by means of the mouse and the alpha-numeric keyboard. It has been thought to be used together with DirectCsound, but it can also be used to control any MIDI instrument. It provides several panels with virtual sliders, virtual joysticks and virtual-piano keyboard. The newer version of the program (VMCI Plus 2.0) allows the user to change more than one parameter at the same time by means of the new Hyper-Vectorial-Synthesis control. VMCI supports seven-bit data as well as higher-resolution fourteen-bit data, all supported by the newest versions of Csound.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9910
id ga9910
authors Mottram, Chiron and Penn, Alan
year 1999
title Slugfest
source International Conference on Generative Art
summary This paper describes the creation of interactive and responsive digital art. By adding a message handling interpreter to SGI's Performer software we have created a medium within which interactions between virtual objects and interactions with the user are made possible. By making objects within the medium responsive to each other it is possible to create emergent effects. By making the medium responsive to the user the viewer is more intimately involved in the artwork. However, at the same time this requires the artist to work with the intrinsic properties of emergence in the system to and to develop the audience relationship by means of involvement in a manner more akin to performance than the plastic arts.The use of virtual reality allows the creation of a profusion of different forms and behaviours not possible in conventional plastic media. The aesthetic of these forms can be governed in two ways, either by in built rules or by direct intervention by the artist/audience persona. The built in rules can be changed dynamically as can the objects' actions as mediated by the viewer's intervention. Underlying this is the aesthetic produced by the machinery of the computer, which can both impede and improve this process, this is the illusion of 3D provided by the Performer libraries in conjuction with the SGI box, and the many constraints implied by this. As such we are also limited by the input devices, though the mouse has now almost become synonymous with the pen, as a means by which our interaction with computer is governed. The paper describes a series of pieces which explore the boundaries of generated and evolving artworks in which kinetics and morphogenesis are integral to investigations of social interaction between virtual performers.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1419
authors Spitz, Rejane
year 1999
title Dirty Hands on the Keyboard: In Search of Less Aseptic Computer Graphics Teaching for Art & Design
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 13-18
summary In recent decades our society has witnessed a level of technological development that has not been matched by that of educational development. Far from the forefront in the process of social change, education has been trailing behind transformations occurring in industrial sectors, passively and sluggishly assimilating their technological innovations. Worse yet, educators have taken the technology and logic of innovations deriving predominantly from industry and attempted to transpose them directly into the classroom, without either analyzing them in terms of demands from the educational context or adjusting them to the specificities of the teaching/learning process. In the 1970s - marked by the effervescence of Educational Technology - society witnessed the extensive proliferation of audio-visual resources for use in education, yet with limited development in teaching theories and educational methods and procedures. In the 1980s, when Computers in Education emerged as a new area, the discussion focused predominantly on the issue of how the available computer technology could be used in the school, rather than tackling the question of how it could be developed in such a way as to meet the needs of the educational proposal. What, then, will the educational legacy of the 1990s be? In this article we focus on the issue from the perspective of undergraduate and graduate courses in Arts and Design. Computer Graphics slowly but surely has gained ground and consolidated as part of the Art & Design curricula in recent years, but in most cases as a subject in the curriculum that is not linked to the others. Computers are usually allocated in special laboratories, inside and outside Departments, but invariably isolated from the dust, clay, varnish, and paint and other wastes, materials, and odors impregnating - and characterizing - other labs in Arts and Design courses.In spite of its isolation, computer technology coexists with centuries-old practices and traditions in Art & Design courses. This interesting meeting of tradition and innovation has led to daring educational ideas and experiments in the Arts and Design which have had a ripple effect in other fields of knowledge. We analyze these issues focusing on the pioneering experience of the Núcleo de Arte Eletrônica – a multidisciplinary space at the Arts Department at PUC-Rio, where undergraduate and graduate students of technological and human areas meet to think, discuss, create and produce Art & Design projects, and which constitutes a locus for the oxygenation of learning and for preparing students to face the challenges of an interdisciplinary and interconnected society.
series SIGRADI
email
last changed 2016/03/10 10:01

_id ga9903
id ga9903
authors Ward, Adrian and Cox, Geoff
year 1999
title How I Drew One of My Pictures: * or, The Authorship of Generative Art
source International Conference on Generative Art
summary The concept of value is traditionally bestowed on a work of art when it is seen to be unique and irreproducible, thereby granting it authenticity. Think of a famous painting: only the original canvas commands genuinely high prices. Digital artwork is not valued in the same way. It can be copied infinitely and there is therefore a corresponding crisis of value. It has been argued that under these conditions of the dematerialised artwork, it is process that becomes valued. In this way, the process of creation and creativity is valued in place of authenticity, undermining conventional notions of authorship. It is possible to correlate many of these creative processes into instructions. However, to give precise instructions on the construction of a creative work is a complex, authentic and intricate process equivalent to conventional creative work (and is therefore not simply a question of 'the death of the author'). This paper argues that to create ‘generative’ systems is a rigorous and intricate procedure. Moreover, the output from generative systems should not be valued simply as an endless, infinite series of resources but as a system. To have a machine write poetry for ten years would not generate creative music, but the process of getting the machine to do so would certainly register an advanced form of creativity. When a programmer develops a generative system, they are engaged in a creative act. Programming is no less an artform than painting is a technical process. By analogy, the mathematical value pi can be approximated as 3.14159265, but a more thorough and accurate version can be stored as the formula used to calculate it. In the same way, it is more complete to express creativity formulated as code, which can then be executed to produce the results we desire. Rather like using Leibnitz's set of symbols to represent a mathematical formula, artists can now choose to represent creativity as computer programs (Harold Cohen’s Aaron, a computer program that creates drawings is a case in point). By programming computers to undertake creative instructions, this paper will argue that more accurate and expansive traces of creativity are being developed that suitably merge artistic subjectivity with technical form. It is no longer necessary or even desirable to be able to render art as a final tangible medium, but instead it is more important to program computers to be creative by proxy. [The paper refers to Autoshop software, available from http://autoshop.signwave.co.uk]
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 5689
authors Garcia Alvarado, Rodrigo, Hempel Holzapfel, Ricardo and Parra, Juan Carlos
year 1999
title Virtual Design for Innovative Timber Structures
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 319-326
summary The major timber structures have great efficiency and beauty, but not many use in buildings due difficulties to represent and resolve theirs geometrical complexity, regulated by several constructive rules. The spatial richness and attractive of these structures can be a contribution in architecture, and encourage the use of wood. For aid the design and impels innovative solutions we are developing a computer system to program the geometrical regulations and allow a tridimensional visualization of different models with virtual-reality devices. First we are studing the architectural morphology and design process of structures more typically used; beams, trusses, frames and arcs. Establishing theirs proportions, distribution, shapes alternatives and the computational algorithm. In other hand we are evaluating the 3D-visualization in the innovation of designs. Some students of architecture developed in a virtual- system small projects based on other projects designed with traditional media. The models were compare by a panel of professors, considering overall quality and creativity. The results of that experience shows advantages in geometrical innovation, specially in organic shapes user-centered instead of orthogonal compositions. But also some constructive fails, which is necessary to support with related procedures.
series AVOCAAD
last changed 2005/09/09 10:48

_id 170f
authors Mora Padrón, Víctor Manuel
year 1999
title Integration and Application of Technologies CAD in a Regional Reality - Methodological and Formative Experience in Industrial Design and Products Development
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 295-297
summary The experience to present is begun and developed during the academic year 1998, together to the course of IV pupils level of the Industrial Design career in the Universidad del Bío-Bío, labor that I have continued assuming during the present year, with a new youths generation. We have accomplished our academic work taking as original of study and base, the industrial and economic situation of the VIII Region, context in the one which we outline and we commit our needs formative as well as methodological to the teaching of the discipline of the Industrial Design. Consequently, we have defined a high-priority factor among pupils and teachers to reach the objectives and activities program of the course, the one which envisages first of all a commitment of attitude and integrative reflection among our academic activity and the territorial human context in the one which we inhabit. In Chile the activity of the industrial designer, his knowledge and by so much his capacity of producing innovation, it has been something practically unknown in the industrial productive area. However, the current national development challenges and the search by widening our markets, they have created and established a conscience of the fact that the Chilean industrial product must have a modern and effective competitiveness if wants be made participates in segments of the international marketing. It is in this new vision where the design provides in decisive form to consider and add a commercial and cultural value in our products. To the university corresponds the role of transmitting the knowledge generated in his classrooms toward the society, for thus to promote a development in the widest sense of the word. Under this prism the small and median regional industry in their various areas, have not integrated in the national arrangement in what concerns to the design and development of new and integral products. The design and the innovation as motor concept for a competitiveness and permanency in new markets, it has not entered yet in the entrepreneurial culture. If we want to save this situation, it is necessary that the regional entrepreneur knows the importance of the Design with new models development and examples of application, through concrete cases and with demands, that serve of base to demonstrate that the alliance among Designer and Industry, opens new perspectives of growth upon offering innovation and value added factors as new competitiveness tools. Today the communication and the managing of the information is a strategic weapon, to the moment of making changes in a social dynamics, so much at local level as global. It is with this look that our efforts and objective are centered in forming to our pupils with an integration speech and direct application toward the industrial community of our region, using the communication and the technological information as a tool validates and effective to solve the receipt in the visualization of our projects, designs and solutions of products. As complement to the development of the proposed topic will be exhibited a series of projects accomplished by the pupils for some regional industries, in which the three dimensional modeling and the use of programs vectoriales demonstrate the efficiency of communication and comprehension of the proposals, its complexity and constructive possibilities.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga9925
id ga9925
authors Ambrosini, L., Longatti, M. and Miyajima, H.
year 1999
title Time sections, abstract machines
source International Conference on Generative Art
summary conditions a time-spatial discontinuity in the urban grid, ancient walls casually discovered in a substrate of the contemporary town needs a surplus of information to be understood and interfaced with their current condition. diagrams diverse chronological stages of the urban evolution are mapped on the area, in order to read the historical stratifications as a multiplicity of signs; this abstract approach leads to consider the roman space as guided by metrics, a system of measure superimposed on the landscape, vs. medioeval spatial continuity, where more fluid relations between the same urban elements create a completely different pattern.assemblage (time sections) a surface, automatically displaced from the medioeval diagram, moves along the z axis, the historical stratification direction, intersecting in various, unpredictable, manners a series of paths; these paths start as parallels, allowing an undifferentiated access to the area, and mutate along their developing direction, intertweening and blending each other; linear openings are cut on the surface, virtually connecting the two levels by light, following the roman grid in rhythm and measure. Projected on the lateral wall, the cadence of the vertical and horizontal elements becomes a temporal diagram of the design process.movement time takes part into the process through two kinds of movement: the first one, freezed when reaches the best results, in terms of complexity, is given by the surface intersecting the tubular paths; the second one is represented by multiple routes walking on which the project can be experienced (in absence of any objective, fixed, point of view, movement becomes the only way to understand relations). Thresholds between typical architectural categories (such as inside-outside, object-landscape etc.) are blurred in favour of a more supple condition, another kind of continuity (re)appears, as a new media, between the different historical layers of the city.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 93a8
authors Anders, P.
year 1999
title Envisioning Cyberspace: Designing 3D Electronic Spaces
source McGraw-Hill, NY
summary Free of the constraints of physical form and limited only by imagination, new environments spring to life daily in a fantastic realm called cyberspace. The creators of this new virtual world may be programmers, designers, architects, even children. In this invigorating exploration of the juncture between cyberspace and the physical world, architect Peter Anders brings together leading-edge cyberspace art and architecture ... inspiring new techniques and technologies ... unexpected unions of reality and virtuality ... and visions of challenges and opportunities as yet unexplored. More than an invitation to tour fantastic realms and examine powerful tools, this book is a hard-eyed look at cyberspace's impact on physical, cultural, and social reality, and the human-centered principles of its design. This is a book that will set designers and architects thinkingNand a work of importance to anyone fascinated with the fast-closing space between the real and the virtual.
series other
email
last changed 2003/04/23 15:14

_id 2c4a
authors Aroztegui, Carmen
year 1999
title The Architect's Use of the Internet - Study of the Architectural Presentation Possibilities
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 363-368
summary The Internet media is opening new horizons in communication and representation in architecture. However, its use today is superficial, limited, and without creativity. This study will explore theories, methods and examples of how the virtual space of the Internet can be used in its full potential. That means to present ways of observing, understanding, interacting, and communicating the space without precedents in architecture. The existent presentations made by architects in the Internet are in general poor and static. Through the comparative analysis of two presentations of the same architectural space in the Internet and the use of state of the art technology in the Internet, this study will show innovations that will make the exploration of the architectural space more attractive, dynamic and interactive. The main issues will be on one hand, the improvement in the communication of the design through the use of the Internet, and on the other hand, the rise of the standards in the quality of the architectural presentations. This work will project possible implications of the Internet in architecture.
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_921693 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002