CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 622

_id 7b68
authors Shounai, Y., Morozumi, M., Homma , R. and Murakami, Y.
year 1999
title On the Development of Group Work CAD for Network PC: GW-CAD III
doi https://doi.org/10.52842/conf.ecaade.1999.473
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 473-481
summary The number of Virtual Design Studio experiments that use a Digital Pin-up Board (WWW) and video conferencing tools is rapidly increasing. As we see that several schools have introduced group-ware to support asynchronous communication of their projects, it is possible to regard that techniques for asynchronous communication have already been developed to some extent. However, participants of those projects still have difficulty with synchronous communication. For example, though designers often desire to exchange models among members to get critical feedback and achieve fast problem solving while working at their desks, there are few CADs that can support concurrent synchronous design communication among members. The first half of this paper discusses a model of synchronous design communication that uses CAD models, and then proposes a prototype of tools that use Microsoft NetMeeting and AutoCAD R14: GW-CAD III. In the middle, a user interface system that enables designers to conveniently model and exchange separate sets of models necessary to elaborate different aspects of design is proposed: "Network Clipboard" "Modeling Space", "Plan Face", and "Section Face". Finally, this paper discusses the results of several experiments that used the prototype.
keywords Synchronous Collaboration, Internet, CAD, Prototype, Schematic Design
series eCAADe
email
last changed 2022/06/07 07:56

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4d95
authors Alvarado, Rodrigo Garcia and Maver, Tom
year 1999
title Virtual Reality in Architectural Education: Defining Possibilities
doi https://doi.org/10.52842/conf.acadia.1999.007
source ACADIA Quarterly, vol. 18, no. 4, pp. 7-9
summary Introduction: virtual reality in architecture Virtual Reality (VR) is an emergent computer technology for full 3D-simulations, which has a natural application in the architectural work, due that activity involves the complete definition of buildings prior to its construction. Although the profession has a long tradition and expertise in the use of 2D-plans for the design of buildings, the increasing complexity of projects and social participation requires better media of representation. However, the technological promise of Virtual Reality involves many sophisticated software and hardware developments. It is based on techniques of 3D-modelling currently incorporated in the majority of drawing software used in architecture, and also there are several tools for rendering, animation and panoramic views, which provide visual realism. But other capabilities like interactivity and sense of immersion are still complex, expensive and under research. These require stereoscopic helmets, 3D pointers and trackers with complicated configurations and uncomfortable use. Most advanced installations of Virtual-Reality like CAVEs involve much hardware, building space and restrictions for users. Nevertheless, diverse developers are working in Virtual-Reality user-friendly techniques and there are many initial experiences of architectural walk-throughs showing advantages in the communication and development of designs. Then we may expect an increasing use of Virtual Reality in architecture.
series ACADIA
email
last changed 2022/06/07 07:54

_id a8f2
authors Becker, R.
year 1999
title Research and development needs for better implementation of the performance concept in building
source Automation in Construction 8 (4) (1999) pp. 525-532
summary Gaps in basic knowledge, inadequacies in the procedural infrastructure and lack of working tools, that still prevent a more systematic application of the performance concept throughout the building process, are identified. One of the main conclusions is that, despite the vast knowledge accumulated during the years in the fields of ergonometrics, human needs, human factor engineering, architectural design, structural analysis, building physics, building materials and durability analysis, this knowledge is not applied systematically during the building process. The situation is attributed to lack of tools for some of the decision making phases in the process, and to the lack of a common, preferably computerized, design platform that would ensure a comprehensive and quantitative approach to all the relevant performance attributes, link smoothly between the various phases along the project development, and minimizes bias caused by human experts.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 6ae4
authors Borde, A., Miyamoto, J., Barki, J., and Conde, M.
year 1999
title New Trends In Graphic Representation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 501-506
summary In terms of graphic representation, architectural & urban study drawings present some fuzziness related to the multiplicity of scales, to the representation of the urban dynamic and to the means of communicating the contents of these studies for different publics, clearly divided among lay and specialists. Since the 16th century there have been certain stimulating propositions to this theme that have had an enormous, often unacknowleged, impact on the perception and construction of the built environment. Recent experiences in Rio, due to the series of urban projects that are being accomplished, is showing that some architecture offices are adopting new graphic trends in drawings conceived for preliminary studies, diagnoses and inventories. Due to the new possibilities offered by graphic computing they are developing, with diferent softwares, a sort of "patchwork” or "collage” and "sampling” technique for morphological analysis and representantion of places and buildings. This use of graphic computing, as an alternative to the usual realistic depictions that attempts to deal with prosaic simulations of an everyday experience, results in a different type of graphic expression that transcend literalism and appealls to the imagination of the general viewer. It is important to highlight that the analysis of these graphic solutions that attempts to turn visible design problems, could result in the development of new graphic tools that will help the creative design process.
keywords Graphic Representation, Architecture, Urbanism
series SIGRADI
email
last changed 2016/03/10 09:47

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.1999
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 076e
authors Ennis, G. and Lindsay, M.
year 1999
title VRML Possibilities: The evolution of the Glasgow Model
source Proceedings of International Conference on Virtual Systems and MultiMedia. University of Abertay. Dundee
summary During the 1980's, ABACUS, a research unit at the University of Strathclyde developed an interest in the ability to model and manipulate large geometrical databases of urban topography. Initially, this interest lay solely in the ability to source, capture and store the relevant data. However, once constructed, these models proved genuinely useful to a wide range of users and there was soon a demand for more functionality relating to the manipulation not just of the graphics, but also the range of urban attributes. Although a number of improvements were implemented there were drawbacks to the wide adoption of the software produced. The problems were almost all due to deficiencies in the then current hardware and software system available to the professions, and although this strand of research continued to be pursued, most of the development had to be focused on research applications and deployment. However, the recent advent of the Virtual Reality Modelling Language (VRML) standards have rekindled interest in this field since this language enables many of the issues that have proved problematic in the past to be addressed and solved. The potential now exists to provide wide access to large scale urban models. This paper focuses on the application of VRML as applied to the 'Glasgow Model'.
series other
email
last changed 2003/04/23 15:50

_id ae38
authors Jabi, Wassim
year 1999
title Integrating Databases, Objects and the World-Wide Web for Collaboration in Architectural Design
source Proceedings of the focus symposium: World Wide Web as Framework for Collaboration in conjunction with the 11th International Conference on Systems Research, Informatics and Cybernetics, The International Institute for Advanced Studies in Systems Research
summary Architectural design requires specialized vertical knowledge that goes beyond the sharing of marks on paper or the multi-casting of video images. This paper briefly surveys the state-ofthe- art in groupware and outlines the need for vertical and integrated support of synchronous and asynchronous design collaboration. The paper also describes a software prototype (WebOutliner) under development that uses a three-tier persistent object-oriented, web-based technology for a richer representation of hierarchical architectural artifacts using Apple’s WebObjects technology. The prototype contributes to earlier work that defined a framework for a shared workspace consisting of Participants, Tasks, Proposals, and Artifacts. These four elements have been found through observation and analysis to be adequate representations of the essential components of collaborative architectural design. These components are also hierarchical which allows users to filter information, copy completed solutions to other parts of the program, analyze and compare design parameters and aggregate hierarchical amounts. Given its object orientation, the represented artifacts have built-in data and methods that allow them to respond to user actions and manage their own sub-artifacts. In addition, the prototype integrates this technology with Java tools for ubiquitous synchronous web-based access. The prototype uses architectural programming (defining the spatial program of a building) and early conceptual design as examples of seamlessly integrated groupware applications.
keywords Computer Supported Collaborative Design, WebObjects, Synchronous and Asynchronous Collaboration, Java Applets, Application Server, Web-based Interface
series other
email
last changed 2002/03/05 19:55

_id 39cb
authors Kelleners, Richard H.M.C.
year 1999
title Constraints in object-oriented graphics
source Eindhoven University of Technology
summary In the area of interactive computer graphics, two important approaches to deal with the complexity of designing and implementing graphics systems are object-oriented programming and constraint-based programming. From literature, it appears that combination of these two has clear advantages but has also proven to be difficult. One of the main problems is that constraint programming infringes the information hiding principle of object-oriented programming. The goal of the research project is to combine these two approaches to benefit from the strengths of both. Two research groups at the Eindhoven University of Technology investigate the use of constraints on graphics objects. At the Architecture department, constraints are applied in a virtual reality design environment. At the Computer Science department, constraints aid in modeling 3D animations. For these two groups, a constraint system for 3D graphical objects was developed. A conceptual model, called CODE (Constraints on Objects via Data flows and Events), is presented that enables integration of constraints and objects by separating the object world from the constraint world. In the design of this model, the main aspect being considered is that the information hiding principle among objects may not be violated. Constraint solvers, however, should have direct access to an object’s internal data structure. Communication between the two worlds is done via a protocol orthogonal to the message passing mechanism of objects, namely, via events and data flows. This protocol ensures that the information hiding principle at the object-oriented programming level is not violated while constraints can directly access “hidden” data. Furthermore, CODE is built up of distinct elements, or entity types, like constraint, solver, event, data flow. This structure enables that several special purpose constraint solvers can be defined and made to cooperate to solve complex constraint problems. A prototype implementation was built to study the feasibility of CODE. Therefore, the implementation should correspond directly to the conceptual model. To this end, every entity (object, constraint, solver) of the conceptual model is represented by a separate process in the language MANIFOLD. The (concurrent) processes communicate by events and data flows. The implementation serves to validate the conceptual model and to demonstrate that it is a viable way of combining constraints and objects. After the feasibility study, the prototype was discarded. The gained experience was used to build an implementation of the conceptual model for the two research groups. This implementation encompassed a constraint system with multiple solvers and constraint types. The constraint system was built as an object-oriented library that can be linked to the applications in the respective research groups. Special constructs were designed to ensure information hiding among application objects while constraints and solvers have direct access to the object data. CODE manages the complexity of object-oriented constraint solving by defining a communication protocol to allow the two paradigms to cooperate. The prototype implementation demonstrates that CODE can be implemented into a working system. Finally, the implementation of an actual application shows that the model is suitable for the development of object-oriented software.
keywords Computer Graphics; Object Oriented Programming; Constraint Programming
series thesis:PhD
last changed 2003/02/12 22:37

_id 170f
authors Mora Padrón, Víctor Manuel
year 1999
title Integration and Application of Technologies CAD in a Regional Reality - Methodological and Formative Experience in Industrial Design and Products Development
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 295-297
summary The experience to present is begun and developed during the academic year 1998, together to the course of IV pupils level of the Industrial Design career in the Universidad del Bío-Bío, labor that I have continued assuming during the present year, with a new youths generation. We have accomplished our academic work taking as original of study and base, the industrial and economic situation of the VIII Region, context in the one which we outline and we commit our needs formative as well as methodological to the teaching of the discipline of the Industrial Design. Consequently, we have defined a high-priority factor among pupils and teachers to reach the objectives and activities program of the course, the one which envisages first of all a commitment of attitude and integrative reflection among our academic activity and the territorial human context in the one which we inhabit. In Chile the activity of the industrial designer, his knowledge and by so much his capacity of producing innovation, it has been something practically unknown in the industrial productive area. However, the current national development challenges and the search by widening our markets, they have created and established a conscience of the fact that the Chilean industrial product must have a modern and effective competitiveness if wants be made participates in segments of the international marketing. It is in this new vision where the design provides in decisive form to consider and add a commercial and cultural value in our products. To the university corresponds the role of transmitting the knowledge generated in his classrooms toward the society, for thus to promote a development in the widest sense of the word. Under this prism the small and median regional industry in their various areas, have not integrated in the national arrangement in what concerns to the design and development of new and integral products. The design and the innovation as motor concept for a competitiveness and permanency in new markets, it has not entered yet in the entrepreneurial culture. If we want to save this situation, it is necessary that the regional entrepreneur knows the importance of the Design with new models development and examples of application, through concrete cases and with demands, that serve of base to demonstrate that the alliance among Designer and Industry, opens new perspectives of growth upon offering innovation and value added factors as new competitiveness tools. Today the communication and the managing of the information is a strategic weapon, to the moment of making changes in a social dynamics, so much at local level as global. It is with this look that our efforts and objective are centered in forming to our pupils with an integration speech and direct application toward the industrial community of our region, using the communication and the technological information as a tool validates and effective to solve the receipt in the visualization of our projects, designs and solutions of products. As complement to the development of the proposed topic will be exhibited a series of projects accomplished by the pupils for some regional industries, in which the three dimensional modeling and the use of programs vectoriales demonstrate the efficiency of communication and comprehension of the proposals, its complexity and constructive possibilities.
series SIGRADI
email
last changed 2016/03/10 09:55

_id d8df
authors Naticchia, Berardo
year 1999
title Physical Knowledge in Patterns: Bayesian Network Models for Preliminary Design
doi https://doi.org/10.52842/conf.ecaade.1999.611
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 611-619
summary Computer applications in design have pursued two main development directions: analytical modelling and information technology. The former line has produced a large number of tools for reality simulation (i.e. finite element models), the latter is producing an equally large amount of advances in conceptual design support (i.e. artificial intelligence tools). Nevertheless we can trace rare interactions between computation models related to those different approaches. This lack of integration is the main reason of the difficulty of CAAD application to the preliminary stage of design, where logical and quantitative reasoning are closely related in a process that we often call 'qualitative evaluation'. This paper briefly surveys the current development of qualitative physical models applied in design and propose a general approach for modelling physical behaviour by means of Bayesian network we are employing to develop a tutoring and coaching system for natural ventilation preliminary design of halls, called VENTPad. This tool explores the possibility of modelling the causal mechanism that operate in real systems in order to allow a number of integrated logical and quantitative inference about the fluid-dynamic behaviour of an hall. This application could be an interesting connection tool between logical and analytical procedures in preliminary design aiding, able to help students or unskilled architects, both to guide them through the analysis process of numerical data (i.e. obtained with sophisticate Computational Fluid Dynamics software) or experimental data (i.e. obtained with laboratory test models) and to suggest improvements to the design.
keywords Qualitative Physical Modelling, Preliminary Design, Bayesian Networks
series eCAADe
email
last changed 2022/06/07 07:59

_id fbfd
authors Niemann, Tobias and Schmidt, Alexander
year 1999
title The Use of New Media Tools n Environmental Simulation
source Simulation of Architectural Space - Color and Light, Methods and Effects [Proceedings of the 4rd European Architectural Endoscopy Association Conference / ISBN 3-86005-267-5] Dresden (Germany), 29 September - 1 October 1999, pp. 28-31
summary We propose a new application in environmental simulation using digital techniques and new media tools, namely QuickTimeVirtualReality (QTVR) and QuickTimeMovies (QTMovies). QTVR enables the user to interactively rotate in a 360degree panorama. The QTVR panoramas will be generated from single images taken with analogue endoscopic simulation techniques by using special QTVR software. The different QTVR panoramas of the model can be connected with each other, additionally by integrating QTMovies showing tracking shots from one panorama node to the other. Thus a virtual net from the planned urban place can be built in which the user can interactively move around and explore. Practical use of this application in public participation in urban development is proposed. A simple demoversion of the here described application will be shown at the EAEA 1999.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id ddss2004_d-49
id ddss2004_d-49
authors Polidori, M. and R. Krafta
year 2004
title Environment – Urban Interface within Urban Growth
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 49-62
summary This work presents the synthesis of a model of urban growth dedicated to accomplish simulations of urban spatial dynamics, based on integrated urban and environmental factors and promoting simultaneity among external and internal growth. The city and surrounding environment are captured and modeled in computational ambient, by application of the centrality / potential model (Krafta, 1994 and 1999), with support of graph theory, cellular automata, GIS and geocomputation. The model assumes the city as a field of opportunities for obtaining income, mediated by the space, which is composed of urban and environmental attributes, that work as attractors or as resistances for the urban growth. The space configuration and the distribution of those attributes generate tensions that differentiate qualitatively and quantitatively the space, through the centrality measure (built with the support of graphs techniques), coming to provoke growth in places with larger potential of development (built with the help of techniques of CA – cellular automata). Growths above environmental thresholds are considered problems, generated and overcome in the same process of production of the urban space. Iterations of that process offer a dynamic behaviour to the model, allowing to observe the growth process along the time. The model presents several possibilities: a) urban - natural environment integration; b) internal and external growth integration; c) variety in the scale; d) GIS integration and geocomputation; e) user interface; f) calibration; g) theoretical possibilities; and h) practical possibilities.
keywords Environment, Urban Growth, Urban Morphology, Simulation
series DDSS
last changed 2004/07/03 22:13

_id 4b44
authors Rodríguez, A., Barcia, J., Diron, F., Saralegui, P., Bages, M., Caetano, C. and Olagüe, C.
year 1999
title Atlas Interactivo Electrónico de Histología y Embriología (AIH) (Electronic Interactive Atlas of Histology and Embriology (AIH))
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 369-371
summary The technology allows to center the educative process in the student. The development of the multimedia systems and Internet facilitated this change, being tools that they make possible to create an atmosphere of interactive and colaborative learning. The remote education promotes three kinds of interactions: faculty-student, students to each other and students with other dynamic electronic resources. The Histology and the Embryology are based on the study of images. We are developing to an electronic atlas of histology and embryology with pictures of histologic material captured with a digital camera and an optical microscope. The pictures (resizables and with explanatory text) are classified by tissues or systems with optative access pages and a Link to an autoevaluation multiple option type test . There is a link to an English version. The AIH makes possible an immediate access of the images and autotesting acquired knowledgements.
series SIGRADI
email
last changed 2016/03/10 09:59

_id 44c0
authors Van Leeuwen, Jos P.
year 1999
title Modelling architectural design information by features : an approach to dynamic product modelling for application in architectural design
source Eindhoven University of Technology
summary Architectural design, like many other human activities, benefits more and more from the ongoing development of information and communication technologies. The traditional paper documents for the representation and communication of design are now replaced by digital media. CAD systems have replaced the drawing board and knowledge systems are used to integrate expert knowledge in the design process. Product modelling is one of the most promising approaches in the developments of the last two decades, aiming in the architectural context at the representation and communication of the information related to a building in all its aspects and during its complete life-cycle. However, after studying both the characteristics of the product modelling approach and the characteristics of architectural design, it is concluded in this research project that product modelling does not suffice for support of architectural design. Architectural design is characterised mainly as a problem solving process, involving illdefined problems that require a very dynamic way of dealing with information that concerns both the problem and emerging solutions. Furthermore, architectural design is in many ways an evolutionary process. In short term this is because of the incremental approach to problem solving in design projects; and in long term because of the stylistic development of designers and the continuous developments in the building and construction industry in general. The requirements that are posed by architectural design are concentrated in the keywords extensibility and flexibility of the design informationmodels. Extensibility means that designers can extend conceptual models with definitions that best suit the design concepts they wish to utilise. Flexibility means that information in design models can be structured in a way that accurately represents the design rationale. This includes the modelling of incidental characteristics and relationships of the entities in the model that are not necessarily predefined in a conceptual model. In general, product modelling does not adequately support this dynamic nature of design. Therefore, this research project has studied the concepts developed in the technology of Feature-based modelling, which originates from the area of mechanical engineering. These concepts include the usage of Features as the primitives for defining and reasoning about a product. Features have an autonomous function in the information model, which, as a result, constitutes a flexible network of relationships between Features that are established during the design process. The definition of Features can be specified by designers to formalise new design concepts. This allows the design tools to be adapted to the specific needs of the individual designer, enlarging the library of available resources for design. In addition to these key-concepts in Feature-based modelling as it is developed in the mechanical engineering context, the project has determined the following principles for a Feature-based approach in the architectural context. Features in mechanical engineering are used mainly to describe the lowest level of detail in a product's design, namely the characteristics of its parts. In architecture the design process does not normally follow a strictly hierarchical approach and therefore requires that the building be modelled as a whole. This implies that multiple levels of abstraction are modelled and that Features are used to describe information at the various abstraction levels. Furthermore, architectural design involves concepts that are non-physical as well as physical; Features are to be used for modelling both kinds. The term Feature is defined in this research project to reflect the above key-concepts for this modelling approach. A Feature is an autonomous, coherent collection of information, with semantic meaning to a designer and possibly emerging during design, that is defined to formalise a design concept at any level of abstraction, either physical or non-physical, as part of a building model. Feature models are built up entirely of Features and are structured in the form of a directed graph. The nodes in the graph are the Features, whereas the arcs are the relationships between the Features. Features can be of user-defined types and incidental relationships can be added that are not defined at the typological level. An inventory in this project of what kind of information is involved in the practice of modelling architectural design is based on the analysis of a selection of sources of architectural design information. This inventory is deepened by a case study and results in the proposition of a categorisation of architectural Feature types.
keywords Automated Management Information Systems; Computer Aided Architectural Design; Information Systems; Modelling
series thesis:PhD
email
more http://www.ds.arch.tue.nl/jos/thesis/
last changed 2003/02/12 22:37

_id d43d
authors Yu, Dazhong
year 1999
title Public Participation in Urban Design Based on Information Technology
doi https://doi.org/10.52842/conf.caadria.1999.393
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 393-402
summary For years, lack of public participation has affected the quality of design and planning. The developing cities constantly face the anti-development sentiments on the part of local residents because of controversial decision of development. Rapid development of information technology provides us with a chance to mend the delay of communication with the public in design procedure. It makes it possible to get the resident's reaction to a new project. Unlike a purely CAD-based environment, computer application to urban design is based on a blend of computer-aided design, spatial information system, and interactive multimedia. It is the combination of geometric, geographic, and annotated information and the need of data integration by collaboration and meanwhile it provides opportunities of participation. Due to the position at the crossover of architecture, landscape architecture, and planning, urban design attempts to control the proceeding in both design improvisations and socio-economic policies. In this proceeding, public participation plays an important role in exchanging opinions with the masses. In the situation of participation in China, we can synthesize some useful methods of public participation in the urban design by means of computer simulation, computer communication, and diverse software and tools, etc.
series CAADRIA
last changed 2022/06/07 07:57

_id 803c
authors Gottfried, A., Angelis, E. De and Trani, M.L.
year 1999
title Results from the application of a performance-based housing regulation in Cadoneghe, Italy
source Automation in Construction 8 (4) (1999) pp. 445-453
summary The article aims to report the experience of a little town, Cadoneghe (suburbs of Padua, northern Italy), in managing a Performance based Building Code. Although pressed by a high housing demand, Cadoneghe asked a design team and a research team for a help to define new basic rules and control tools, to avoid the most usual failures of Italian mass housing projects. The administration pursued the application of these rules in four stages:
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cd2e
authors O’Reilly, T.
year 1999
title Hardware, Software and Infoware
source Di Bona, C., Ockman, S. Stone, M.: Open Sources. Voices from the Open Source Revolution, First Edition, Sebastopol, CA: O’Reilly Publishers
summary I was talking with some friends recently, friends who don't own a computer. They were thinking of getting one so they could use Amazon.com to buy books and CDs. Not to use ``the Internet,'' not to use ``the Web,'' but to use Amazon.com. Now, that's the classic definition of a ``killer application'': one that makes someone go out and buy a computer. What's interesting is that the killer application is no longer a desktop productivity application or even a back-office enterprise software system, but an individual web site. And once you start thinking of web sites as applications, you soon come to realize that they represent an entirely new breed, something you might call an ``information application,'' or perhaps even ``infoware.'' Information applications are used to computerize tasks that just couldn't be handled in the old computing model. A few years ago, if you wanted to search a database of a million books, you talked to a librarian, who knew the arcane search syntax of the available computerized search tools and might be able to find what you wanted. If you wanted to buy a book, you went to a bookstore, and looked through its relatively small selection. Now, tens of thousands of people with no specialized training find and buy books online from that million-record database every day. The secret is that computers have come one step closer to the way that people communicate with each other. Web-based applications use plain English to build their interface -- words and pictures, not specialized little controls that acquire meaning only as you learn the software. Traditional software embeds small amounts of information in a lot of software; infoware embeds small amounts of software in a lot of information. The ``actions'' in an infoware product are generally fairly simple: make a choice, buy or sell, enter a small amount of data, and get back a customized result.
series other
last changed 2003/04/23 15:50

_id f58e
authors Bugay, Edson Luiz and Ulbricht, Vania Ribas
year 1999
title Hipermidia para Ensino de Render no AutoCad 14 (Hypermedia for the Tachinf of Render 14 AutoCad)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 280-284
summary Hypermedia applications in education have grown very much and are nowadays available in a great variety of titles covering a major extension of topics. However most of these applications have not gathered too much pedagogic embodiment and when they do have it, it is rather nearly to the intuitive level than based on one or more pedagogic theories. This paper's objective is to provide a practical view of hypermedia directed to teaching which has formed the development basis of a prototype for teaching render in Autocad 14. The several stages' view of developing an hypermedia were considered in the process of the prototype's creation such as the theme's definition, the staffs composition, the metaphor's choice, and the pedagogic model are discussed in details, as well as the several stages that should be followed since the proposals beginning until the product's final distribution. The chosen metaphor is the one of an art study having in mind the meaning of the word "render" being "the artistic representation of a model" once defined the metaphor, the screen's graphical part were developed accordingly.
keywords Hypermedia, Rendering, Learning, Teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id 1b4d
authors Ding, Lan
year 1999
title An Evolutionary Model for Style Representation Emergence in Design
source University of Sydney, Key Centre of Design Computing and Cognition
summary This thesis is concerned with the development of an evolutionary process model for style representation emergence in design. It explores issues involved in the interpretation of style, the concept and process of style representation emergence, an evolutionary approach based on genetic engineering, and its computational implementation. Style is a complex phenomenon in design. Interpreting and formulating design style is a difficult task. This thesis proposes a language model which interprets style space utilising hierarchical levels that map onto syntax and semantics. The style space is then formulated using a genetic description. Current studies have discussed shape semantics emergence in design, but none has been proposed for the emergence of style representation. This thesis provides the concept of style representation emergence with the emphasis on the interpretative aspect of style as well as the emergence process. It explores the emergence process of style representation through an evolutionary approach. Simulation of biological evolution appears to be very useful for design problems. This thesis develops style representation emergence through evolutionary simulation based on genetic engineering. A hierarchical evolutionary process encompassing competition as well as discovery and an evolutionary combination is proposed and developed. A computational representation of style can then be derived by the computer system through the use of this evolutionary process. This model of style representation emergence is applied to traditional Chinese architecture. An evolutionary system is implemented and presented with some examples of traditional Chinese architectural facades. The results from the implementation of the system are analysed and the utility of this model is investigated. The implementation is developed in a Unix environment using the C language. The AutoCAD package is used for the graphic representation.

series thesis:PhD
email
last changed 2003/05/15 07:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_8877 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002