CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 625

_id b687
authors Tapia, M.
year 1999
title A visual implementation of a shape grammar system
source Environment and planning B: planning & design, 26, pp. 59–73
summary Shape grammars specify a mechanism for performing recursive shape computations. A general paradigm is established for a computer implementation supporting this computation in the algebras of points and lines in 2-d (U0 2 and U1 2). The guiding principles and the actual implementation are described.
series journal paper
last changed 2003/04/23 15:50

_id 5bce
authors Ceccato, Cristiano
year 1999
title Evolutionary Design Tools for Mass-Customisation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 152-156
summary This paper describes an instance of the author’s ongoing research in the field of Generative Design. The work is based on the premise that computer-aided design (CAD) should evolve beyond its current limitation of one-way interaction, and become a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customised designs which exhibit common features. The understanding of fundamental shape-forming processes in nature inspires us to move beyond the existing CAD paradigms and re-examine the way we can benefit from the computers in design. We can use this knowledge to create a new generation of computer-based design tools which use evolutionary search algorithms to generate create a common family of individual designs optimised according to particular criteria, while supporting our design intuition. The author explores this idea by illustrating a research project between the Hong Kong Polytechnic University and Deakin University (Australia). The project implements a multi-user oriented design tool for evolutionary design, which was tailored to produce a simple object such as door handle. The paper first gives a short historical and philosophical to the work, then describes the technical and algorithmic requirements, and implementation of the system. It concludes by describing an experiment in which the system was used on a "live" test group of people to generate individual, mass-customised designs.
series SIGRADI
email
last changed 2016/03/10 09:48

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1b4d
authors Ding, Lan
year 1999
title An Evolutionary Model for Style Representation Emergence in Design
source University of Sydney, Key Centre of Design Computing and Cognition
summary This thesis is concerned with the development of an evolutionary process model for style representation emergence in design. It explores issues involved in the interpretation of style, the concept and process of style representation emergence, an evolutionary approach based on genetic engineering, and its computational implementation. Style is a complex phenomenon in design. Interpreting and formulating design style is a difficult task. This thesis proposes a language model which interprets style space utilising hierarchical levels that map onto syntax and semantics. The style space is then formulated using a genetic description. Current studies have discussed shape semantics emergence in design, but none has been proposed for the emergence of style representation. This thesis provides the concept of style representation emergence with the emphasis on the interpretative aspect of style as well as the emergence process. It explores the emergence process of style representation through an evolutionary approach. Simulation of biological evolution appears to be very useful for design problems. This thesis develops style representation emergence through evolutionary simulation based on genetic engineering. A hierarchical evolutionary process encompassing competition as well as discovery and an evolutionary combination is proposed and developed. A computational representation of style can then be derived by the computer system through the use of this evolutionary process. This model of style representation emergence is applied to traditional Chinese architecture. An evolutionary system is implemented and presented with some examples of traditional Chinese architectural facades. The results from the implementation of the system are analysed and the utility of this model is investigated. The implementation is developed in a Unix environment using the C language. The AutoCAD package is used for the graphic representation.

series thesis:PhD
email
last changed 2003/05/15 07:25

_id 49fe
authors Li, Andrew I-Kang
year 1999
title Expressing Parametric Dependence in Shape Grammars, with an Example from Traditional Chinese Architecture
doi https://doi.org/10.52842/conf.caadria.1999.265
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 265-274
summary Shape grammars traditionally generate one product at a time. This leads to difficulties when dependent parameters are involved. Parallel grammars are proposed as a solution. As an example, a grammar is shown which generates plans according to the 12th-century Chinese building manual Yingzao fashi.
series CAADRIA
email
last changed 2022/06/07 07:56

_id f500
authors Almeida Sampaio, A.
year 1999
title Automation of Deck Bridge Representations
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 69-79
summary The bridge deck has a apparent simple shape, but it is the result of an adequate combination of two longitudinal geometric components: the deck shape evolution along de longitudinal section the layout of the road, that acts in simultaneous over a cross section, defining the deck exact shape. A geometric modelling computer programme was developed for box girder decks, allowing the generation of cross sections along the deck, defined with correct shape and location. In the elaboration of the deck plan drawings, the geometric information of the real deck shape is required. This information is not managed in an integrated and automatic way. On the creation of these drawings, directly executed over a graphic system, the time consumed is considerable and it is easy to comet errors. This paper describes the drawing module included in the computer program refereed. The deck plan projections are obtained, in DXF format drawing files, using the geometric information obtained from 3D-deck model. Using the drawing module it is possible to generate the usual deck drawings required in bridge design process. Then, his module is a great support for the design process within its geometric design stage.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id d423
authors Arvin, Scott A. and House, Donald H.
year 1999
title Making Designs Come Alive: Using Physically Based Modeling Techniques in Space Layout Planning
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 245-262
summary This paper introduces the concept of responsive design. It elaborates this concept as an approach to free form, adaptable, automated design applying physically based modeling techniques to the design process. Our approach attempts to bridge the gap between totally automated design and the free form brainstorming designers normally employ. We do this by automating the initial placement and sizing of design elements, with an interactive engine that appears alive and highly responsive. We present a method for applying these techniques to architectural space layout planning, and preliminary implementation details for a prototype system for developing rectangular, two-dimensional, single- story floor plans.
keywords Physically Based Space Layout, Physically Based Design, Responsive Design, Space Layout Planning, Computer-aided Design, Human-computer Interaction
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 6480
authors Asanowicz, Aleksander
year 1999
title Computer in Creation of Architectural Form
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999,pp. 131-142
summary This paper considers graphic methods of presentation of ideas 'in the creation of architectural forms' and evolution of these methods, determined by the implementations of information technology. Drawings have been the main medium of expression since Leonardo da Vinci to the present-day. Graphic communication has always been treated as a main design tool, both - at the ending stage of design and at the early design stage. Implementation of computers in design doe not change this situation. The entire design process proceeds in a traditional way. While searching for the idea we use hand sketches and, after this, technical drawings are draught on a plotter, which replaces a drawing pen. Using computers at the early design stages encounters serious difficulties. The main thesis of this paper is that hardware and software inadequacy is not the problem, the problem is in the inadequacy of the design methods. This problem is to be reconceived as what a person can do with a program, rather than what is the capacity of a program. Contemporary computer techniques allow us to put an equation mark between the searching for idea, visualisation and its realisation in virtual space. This paper presents Sketching by scanning - an experimental method of using computer hardware and software for stimulating of searching of architectural's form.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9e00
authors Bridges, Alan
year 1999
title Progress? What Progress?
doi https://doi.org/10.52842/conf.ecaade.1999.321
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 321-326
summary This paper briefly reviews some of the history of computer graphics standardisation and then presents two specific case studies: one comparing HTML with SGML and Troff and the other comparing VRML with the Tektronix® Interactive Graphics Language implementation of the ACM Core Standard. In each case, it will be shown how the essential intellectual work carried out twenty years ago still lies at the foundations of the newer applications.
keywords SGML, HTML, VRML
series eCAADe
email
last changed 2022/06/07 07:54

_id a9b0
authors Cha, Myung Yeol and Gero, John
year 1999
title Style Learning: Inductive Generalisation of Architectural Shape Patterns
doi https://doi.org/10.52842/conf.ecaade.1999.629
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 629-644
summary Art historians and critics have defined the style as common features appeared in a class of objects. Abstract common features from a set of objects have been used as a bench mark for date and location of original works. Common features in shapes are identified by relationships as well as physical properties from shape descriptions. This paper will focus on how the computer recognises common shape properties from a class of shape objects to learn style. Shape representation using schema theory has been explored and possible inductive generalisation from shape descriptions has been investigated.
keywords Style, Inductive Generalisation, Knowledge Representation, Shape
series eCAADe
email
last changed 2022/06/07 07:55

_id f51a
authors Del Pup, Claudio
year 1999
title Carbon Pencil, Brush and Mouse, Three Tools in the Learning Process of New University Art Designers
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 420-425
summary This article develops the introduction of computer technologies in the fine arts environment the use of these new tools, sharing the process of creation and interacting at the same level with older technics, breaks the myth of technology and tries to reach the right place according to current or modern advances. As an introduction, it explains the insertion in the current courses of study of the "computer languages area", its implementation, present situation and future stages. An important point we have developed is the teaching methodology, to solve the transition of those who, challenging their investigations in different areas, like fire arts, graphic arts, film or video, need the support of computers. The first steps consist in designing sample courses, which allow the measurement of results, the definition of concepts like extension, capacities, teaching hours and the most important, a methodology to share the enthusiasm of creation with the difficulties of learning a new technique it is necessary to discover limits, to avoid easy results as a creative tool one of the most important problems we have faced is the necessity of coordinating the process of creation with the individual time of a plastic artist, finding the right way that allows the integration of all the group, minimizing desertion and losing of motivation. Two years later, the first results in the field of digital image investigations and assistance in form design. Volume as a challenge and solutions supported in techniques of modeling in 3D (experiences of modeling a virtual volume from a revolution profile, its particular facts and the parallelism with potter's lathe the handling of image as the most important element, as an work of art itself, but also as a support in the transmission of knowledge (design of a CD as a tool for the department of embryology of medical school with the participation of people from the medical school, engineering school and school of fine arts). Time as a variable, movement, animation and its techniques, multimedia (design of short videos for the 150th anniversary of the Republic University). Conclusions, good hits, adjustments, new areas to include, problems to solve, the way of facing a constantly evolving technology.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 125a
authors Dikbas, Attila
year 1999
title An Evaluating Model for the Usage of Web-based Information Technology in Computer Aided Architectural Design and Engineering Education
doi https://doi.org/10.52842/conf.ecaade.1999.349
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 349-352
summary New technologies often reshape expectations, needs and Opportunities so as to develop strategic Plans for the implementation of Information Techniques in education and research. The widespread acceptance of the internet and more specifically the World Wide Web (WWW) has raised the awareness of educators to the potential for online education, virtual classrooms and even virtual universities. With the advent of computer mediated communication, especially the widespread adoption of the web as a publishing medium, educators see the advantages and potential of delivering educational material over the Internet. The Web offers an excellent medium for content delivery with full text, colour graphics support and hyperlinks. The Purpose of this paper is to present a model for the usage of web-based information technology in computer aided architectural design and engineering education. It involves the key features of a full educational system that is capable of offering the teacher and the student flexibility with which to approach their teaching and learning tasks in ways most appropriate to the architectural design and engineering education. Web-based educational system aims at creating quality in on-line educational materials taking collaboration, support, new skills, and, most of all, time. The paper concludes with a discussion of the benefits of such an education system suggesting directions for further work needed to improve the quality of architectural design and engineering education.
keywords Web-based Information Technology, Online Education, Virtual Campus, Computer Aided Architectural Design, Engineering Education
series eCAADe
last changed 2022/06/07 07:55

_id 9e26
authors Do, Ellen Yi-Luen,
year 1999
title The right tool at the right time : investigation of freehand drawing as an interface to knowledge based design tools
source College of Architecture, Georgia Institute of Technology
summary Designers use different symbols and configurations in their drawings to explore alternatives and to communicate with each other. For example, when thinking about spatial arrangements, they draw bubble diagrams; when thinking about natural lighting, they draw a sun symbol and light rays. Given the connection between drawings and thinking, one should be able infer design intentions from a drawing and ultimately use such inferences to program a computer to understand our drawings. This dissertation reports findings from empirical studies on drawings and explores the possibility of using the computer to automatically infer designer's concerns from the drawings a designer makes. This dissertation consists of three parts: 1) a literature review of design studies, cognitive studies of drawing and computational sketch systems, and a set of pilot projects; 2) empirical studies of diagramming design intentions and a design drawing experiment; and 3) the implementation of a prototype system called Right-Tool-Right-Time. The main goal is to find out what is in design drawings that a computer program should be able to recognize and support. Experiments were conducted to study the relation between drawing conventions and the design tasks with which they are associated. It was found from the experiments that designers use certain symbols and configurations when thinking about certain design concerns. When thinking about allocating objects or spaces with a required dimensions, designers wrote down numbers beside the drawing to reason xviii about size and to calculate dimensions. When thinking about visual analysis, designers drew sight lines from a view point on a floor plan. Based on the recognition that it is possible to associate symbols and spatial arrangements in a drawing with a designer's intention, or task context, the second goal is to find out whether a computer can be programed to recognize these drawing conventions. Given an inferred intention and context, a program should be able to activate appropriate design tools automatically. For example, concerns about visual analysis can activate a visual simulation program, and number calculations can activate a calculator. The Right- Tool-Right-Time prototype program demonstrates how a freehand sketching system that infers intentions would support the automatic activation of different design tools based on a designers' drawing acts.
series thesis:PhD
email
more http://www.arch.gatech.edu/~ellen/thesis.html
last changed 2004/10/04 07:49

_id d79a
authors Ekholm, Anders and Fridqvist, Sverker
year 1999
title The BAS*CAAD Information System for Design principles, Implementation, and a Design Scenario
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 149-164
summary The objectives of the BAS-CAAD-project are to investigate into theories and methods for computer aided architectural design, with emphasis on requirements of early stages of the design process. Information systems can be characterised as static or dynamic concerning the definition of classes in the model schema, and concerning classification of model objects. The paper presents the BAS-CAAD system, a prototype software that implements the conceptually most important features of a dynamic information system for design. The BAS-CAAD information system is built on a generic ontological framework. The system allows a free combination of attributes, supporting the incremental way that knowledge is built up during design. It provides a generic library structure that allows definition of objects classes in different levels of generalisation that may originate from international standards or the individual designer. For example, in the construction context, it allows modelling of buildings and their parts, as well as user organisations and user activities. The function of the system is illustrated in two scenarios.
keywords CAD, Design, Dynamic Schema Evolution, Information Systems, Object Oriented Modelling, Product Modelling, Design Scenario
series CAAD Futures
email
last changed 2006/11/07 07:23

_id 5e85
authors Heylighen, Ann and Neuckermans, Herman
year 1999
title Learning from Experience: Promises, Problems and Side-effects of CBD in Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.567
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 567-575
summary Learning from design experience is the essence of Case-Based Design (CBD). Because architects are said to learn design by experience, CBD seems to hold great promises for architectural design, which have inspired various CBD tools. Learning from the experience of developing and using these tools is the objective of this paper. On the one hand, the original expectations seem far from being accomplished today. Reasons for this limited success can be found at three different levels. Level one is the cognitive model underlying CBD, which raises some specific difficulties within the field of architecture. At the level of implementation, few tools manage to draw the full consequences of this view, thus leading to an oversimplification of CBD and/or architectural design. Level three has to do with introducing CBD tools in design education and assessing the effects of this introduction. On the other hand, CBD seems to have caused some interesting side effects, such as an increased interest in creativity and copyright, and the recent re-discovery of the key-role cases play inside and outside the field of CAAD. Thus, although its promises may not be fulfilled, CBD definitely can contribute to design education, be it sometimes without the support of computer technology.
keywords Case-Based Design, Design Education
series eCAADe
email
last changed 2022/06/07 07:50

_id f44f
authors Huang, Ying-Hsiu
year 2000
title Investigating the Cognitive Behavior of Generating Idea Sketches. Neural Network Simulation
doi https://doi.org/10.52842/conf.caadria.2000.287
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 287-296
summary In idea sketches, there are a number of ambiguous shapes. Designers will associate and transform some shapes into others (Liu, 1993). Then, they evaluate these shapes in terms of functions and design requirements; furthermore, they would have generated other shapes that certified the design requirements (Huang, 1999). However, not only is the idea of design composed of one element, but also consisted of varied components. The purpose of this paper is to investigate how designers generate ideas of multi-component products, and to simulate this phenomenon by neural networks. At the same time, this paper attempts to study the design cognitive behavior of idea-generating stages, and explores the designers' cognitive phenomenon. Therefore, there are two stages in this paper: First, I conduct a cognitive experiment to realize how designers generate the multi-component product and acquire the sketches that designers generated. Second, I train the neural networks to simulate the behavior of idea generation and explore the cognitive phenomenon in design sketches. As a result, networks associate one shape that trained before, and then generate a complete idea. This phenomenon is similar to the cognitive behavior of designers who saw the ambiguous shape as one shape, which was retrieved from LTM. Moreover, the neural network is examined by a rectangle, which is totally different from the training patterns. The network will associate a confused shape. But the network will associate different shapes by adjusting some critical parameters. Designers can generate variable shapes from one shape, but the signal neural network can't simulate this kind of behavior. On the contrary, this paper proposes five sequential networks to generate variable shapes from the same shape and simulates how designers develop ideas.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 130b
authors Huang, Ying-Hsiu
year 1999
title A Cognitive Study of Shapes and Functions in Design Sketches: Simulating an Industrial Design Case by Neural Networks
doi https://doi.org/10.52842/conf.caadria.1999.275
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 275-284
summary The present research focuses on transforming shapes that had been drawn by designers on the sketches and on evaluating the shapes from design requirements. In this research, neural networks simulate the result from collecting shapes that designers transformed from original shapes and evaluations from all ones. There are four steps in this research: First, a cognitive experiment. I collected real shapes that designers drew and evaluations from the experiment in order to training the neural networks. Second, a transforming neural network is simulating the behavior in which designers transformed one shape into another without evaluating the design requirements. Third, a evaluating neural network that trained by the evaluations that collected from the experiment is simulating how designers criticized the shapes in terms of design requirements. Fourth, modifying program is trying to modify the evaluations that had been criticized by designers from all shapes and generating a new shape from modified evaluations. This research proposed a synthetic system that simulating the behavior during design sketching, therefore, computers could also generate some ideas like human designer.
series CAADRIA
last changed 2022/06/07 07:50

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 39cb
authors Kelleners, Richard H.M.C.
year 1999
title Constraints in object-oriented graphics
source Eindhoven University of Technology
summary In the area of interactive computer graphics, two important approaches to deal with the complexity of designing and implementing graphics systems are object-oriented programming and constraint-based programming. From literature, it appears that combination of these two has clear advantages but has also proven to be difficult. One of the main problems is that constraint programming infringes the information hiding principle of object-oriented programming. The goal of the research project is to combine these two approaches to benefit from the strengths of both. Two research groups at the Eindhoven University of Technology investigate the use of constraints on graphics objects. At the Architecture department, constraints are applied in a virtual reality design environment. At the Computer Science department, constraints aid in modeling 3D animations. For these two groups, a constraint system for 3D graphical objects was developed. A conceptual model, called CODE (Constraints on Objects via Data flows and Events), is presented that enables integration of constraints and objects by separating the object world from the constraint world. In the design of this model, the main aspect being considered is that the information hiding principle among objects may not be violated. Constraint solvers, however, should have direct access to an object’s internal data structure. Communication between the two worlds is done via a protocol orthogonal to the message passing mechanism of objects, namely, via events and data flows. This protocol ensures that the information hiding principle at the object-oriented programming level is not violated while constraints can directly access “hidden” data. Furthermore, CODE is built up of distinct elements, or entity types, like constraint, solver, event, data flow. This structure enables that several special purpose constraint solvers can be defined and made to cooperate to solve complex constraint problems. A prototype implementation was built to study the feasibility of CODE. Therefore, the implementation should correspond directly to the conceptual model. To this end, every entity (object, constraint, solver) of the conceptual model is represented by a separate process in the language MANIFOLD. The (concurrent) processes communicate by events and data flows. The implementation serves to validate the conceptual model and to demonstrate that it is a viable way of combining constraints and objects. After the feasibility study, the prototype was discarded. The gained experience was used to build an implementation of the conceptual model for the two research groups. This implementation encompassed a constraint system with multiple solvers and constraint types. The constraint system was built as an object-oriented library that can be linked to the applications in the respective research groups. Special constructs were designed to ensure information hiding among application objects while constraints and solvers have direct access to the object data. CODE manages the complexity of object-oriented constraint solving by defining a communication protocol to allow the two paradigms to cooperate. The prototype implementation demonstrates that CODE can be implemented into a working system. Finally, the implementation of an actual application shows that the model is suitable for the development of object-oriented software.
keywords Computer Graphics; Object Oriented Programming; Constraint Programming
series thesis:PhD
last changed 2003/02/12 22:37

_id 70e3
authors Kim, Yong-Seong
year 1999
title Knowledge-Aided Design System for Intelligent Building Design
doi https://doi.org/10.52842/conf.caadria.1999.305
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 305-312
summary In the age of information technology, architectural design problems become increasingly complex, the finding of optimal solutions has become more difficult and obscure. Computer-aided design techniques have been applied to solve these ill-structured design problems; however, most of these applications have been used for graphical automation. Design improvement in quality has not been achieved using traditional computer programs. To handle the critical design decision problems, design systems need to be structured based on theoretical problem solving models. This would enable the design system to handle the problem solving design knowledge as well as the various technological aspects and geometrical representations. A theoretical model, knowledge-aided design, is proposed. Knowledge-aided design is a conceptual and theoretical model based on fundamental principles of design. It provides a problem-solving environment and a procedure for knowledge-based computer-aided architectural design based on cognitive science and artificial intelligence techniques. As a partial implementation of the theoretical model, the development of knowledge-aided design system for intelligent building design is described.
series CAADRIA
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_323489 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002