CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 240

_id b73a
authors Angelo,C.V., Bins Ely, V.H.M., Bueno,A.P., Ludvig C. and Trezub, D.
year 1999
title Space Syntax and the New Transportation System in the Santa Catarina Island
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 434-437
summary The paper reports an on-going research that aims at describing and analysing some of the syntactic characteristics of the urban space of Santa Catarina Island, in an attempt to evaluate its performance, more specifically its social and spatial integration and segregation. The research has been conducted with the aid of the Aximagic software, still in exam stage and not yet released to the public, a tool being developed by a group of researches of the Rio Grande do Sul Federal University and given up by Prof. Doctor Benamy Turkienicz. The software is part of a larger georeferenced program called CityZoom wich includes others tools to the comprehention of the urban morphology. This program works with graphic pictures in the inlet of data and also in the acquisition of results. The syntactic study of the Santa Catarina Island as a whole aims to obtain the comprehension of its global structure, relating it to the integrated public transportation system proposed to Florianópolis. These studies should allow an understanding of the impact the developments will have upon the urban morphology, and the new public transportation system.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6480
authors Asanowicz, Aleksander
year 1999
title Computer in Creation of Architectural Form
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999,pp. 131-142
summary This paper considers graphic methods of presentation of ideas 'in the creation of architectural forms' and evolution of these methods, determined by the implementations of information technology. Drawings have been the main medium of expression since Leonardo da Vinci to the present-day. Graphic communication has always been treated as a main design tool, both - at the ending stage of design and at the early design stage. Implementation of computers in design doe not change this situation. The entire design process proceeds in a traditional way. While searching for the idea we use hand sketches and, after this, technical drawings are draught on a plotter, which replaces a drawing pen. Using computers at the early design stages encounters serious difficulties. The main thesis of this paper is that hardware and software inadequacy is not the problem, the problem is in the inadequacy of the design methods. This problem is to be reconceived as what a person can do with a program, rather than what is the capacity of a program. Contemporary computer techniques allow us to put an equation mark between the searching for idea, visualisation and its realisation in virtual space. This paper presents Sketching by scanning - an experimental method of using computer hardware and software for stimulating of searching of architectural's form.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8171
authors Ataman, Osman
year 1999
title Facilitating Conceptual Change: Computers, Cognitive Processes and Architecture
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 275-279
summary Computers have gained universal acceptance as tools that designers use. However, computers are often not used to advance the design process but just to make drawings. Many architectural schools still focus on a production orientation which puts the highest value on information management, precise representations and drafting enhancements. Mostly, computer education is limited with button pushing and training manuals. It is the contention of the author that students in Design Studio courses can benefit greatly from computer based educational pedagogy designed to provide them with experiences they currently do not possess. In particular, little time in the computer courses (outside lectures) is spent applying concepts and features of digital tools in design studio environment. In architecture, computers cannot be simply defined as a presentation and production tools. As a cognitive tool, computers provide designers with intelligible and effective representational tools of thought and communication, changes the syntactic structure of design. Consequently, the conceptual structure of computers impacts the conceptual structure of the design project, fosters the analytical processes and facilitates conceptual changes. This paper describes the use of computers in a first year architectural design studio. It attempts to address the importance of developing a design process that is redefined by the use of computing, integrating concept and perception. Furthermore, it describes the theoretical foundations and the underlying cognitive processes that contribute designers' conceptual development.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 48a7
authors Brooks
year 1999
title What's Real About Virtual Reality
source IEEE Computer Graphics and Applications, Vol. 19, no. 6, Nov/Dec, 27
summary As is usual with infant technologies, the realization of the early dreams for VR and harnessing it to real work has taken longer than the wild hype predicted, but it is now happening. I assess the current state of the art, addressing the perennial questions of technology and applications. By 1994, one could honestly say that VR "almost works." Many workers at many centers could doe quite exciting demos. Nevertheless, the enabling technologies had limitations that seriously impeded building VR systems for any real work except entertainment and vehicle simulators. Some of the worst problems were end-to-end system latencies, low-resolution head-mounted displays, limited tracker range and accuracy, and costs. The technologies have made great strides. Today one can get satisfying VR experiences with commercial off-the-shelf equipment. Moreover, technical advances have been accompanied by dropping costs, so it is both technically and economically feasible to do significant application. VR really works. That is not to say that all the technological problems and limitations have been solved. VR technology today "barely works." Nevertheless, coming over the mountain pass from "almost works" to "barely works" is a major transition for the discipline. I have sought out applications that are now in daily productive use, in order to find out exactly what is real. Separating these from prototype systems and feasibility demos is not always easy. People doing daily production applications have been forthcoming about lessons learned and surprises encountered. As one would expect, the initial production applications are those offering high value over alternate approaches. These applications fall into a few classes. I estimate that there are about a hundred installations in daily productive use worldwide.
series journal paper
email
last changed 2003/04/23 15:14

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
doi https://doi.org/10.52842/conf.ecaade.1999
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id f58e
authors Bugay, Edson Luiz and Ulbricht, Vania Ribas
year 1999
title Hipermidia para Ensino de Render no AutoCad 14 (Hypermedia for the Tachinf of Render 14 AutoCad)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 280-284
summary Hypermedia applications in education have grown very much and are nowadays available in a great variety of titles covering a major extension of topics. However most of these applications have not gathered too much pedagogic embodiment and when they do have it, it is rather nearly to the intuitive level than based on one or more pedagogic theories. This paper's objective is to provide a practical view of hypermedia directed to teaching which has formed the development basis of a prototype for teaching render in Autocad 14. The several stages' view of developing an hypermedia were considered in the process of the prototype's creation such as the theme's definition, the staffs composition, the metaphor's choice, and the pedagogic model are discussed in details, as well as the several stages that should be followed since the proposals beginning until the product's final distribution. The chosen metaphor is the one of an art study having in mind the meaning of the word "render" being "the artistic representation of a model" once defined the metaphor, the screen's graphical part were developed accordingly.
keywords Hypermedia, Rendering, Learning, Teaching
series SIGRADI
email
last changed 2016/03/10 09:47

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
doi https://doi.org/10.52842/conf.ecaade.1999.374
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id 4b48
authors Dourish, P.
year 1999
title Where the Footprints Lead: Tracking down other roles for social navigation
source Social Navigation of Information Space, eds. A. Munro, K. H. and D Benyon. London: Springer-Verlag, pp 15-34
summary Collaborative Filtering was proposed in the early 1990's as a means of managing access to large information spaces by capturing and exploiting aspects of the experiences of previous users of the same information. Social navigation is a more general form of this style of interaction, and with the widening scope of the Internet as an information provider, systems of this sort have rapidly moved from early research prototypes to deployed services in everyday use. On the other hand, to most of the HCI community, the term social navigation" is largely synonymous with "recommendation systems": systems that match your interests to those of others and, on that basis, provide recommendations about such things as music, books, articles and films that you might enjoy. The challenge for social navigation, as an area of research and development endeavour, is to move beyond this rather limited view of the role of social navigation; and to do this, we must try to take a broader view of both our remit and our opportunities. This chapter will revisit the original motivations, and chart something of the path that recent developments have taken. Based on reflections on the original concerns that motivated research into social navigation, it will explore some new avenues of research. In particular, it will focus on two. The first is social navigation within the framework of "awareness" provisions in collaborative systems generally; and the second is the relationship of social navigation systems to spatial models and the ideas of "space" and "place" in collaborative settings. By exploring these two ideas, two related goals can be achieved. The first is to draw attention to ways in which current research into social navigation can be made relevant to other areas of research endeavour; and the second is to re-motivate the idea of "social navigation" as a fundamental model for collaboration in information-seeking."
series other
last changed 2003/04/23 15:50

_id 5e85
authors Heylighen, Ann and Neuckermans, Herman
year 1999
title Learning from Experience: Promises, Problems and Side-effects of CBD in Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 567-575
doi https://doi.org/10.52842/conf.ecaade.1999.567
summary Learning from design experience is the essence of Case-Based Design (CBD). Because architects are said to learn design by experience, CBD seems to hold great promises for architectural design, which have inspired various CBD tools. Learning from the experience of developing and using these tools is the objective of this paper. On the one hand, the original expectations seem far from being accomplished today. Reasons for this limited success can be found at three different levels. Level one is the cognitive model underlying CBD, which raises some specific difficulties within the field of architecture. At the level of implementation, few tools manage to draw the full consequences of this view, thus leading to an oversimplification of CBD and/or architectural design. Level three has to do with introducing CBD tools in design education and assessing the effects of this introduction. On the other hand, CBD seems to have caused some interesting side effects, such as an increased interest in creativity and copyright, and the recent re-discovery of the key-role cases play inside and outside the field of CAAD. Thus, although its promises may not be fulfilled, CBD definitely can contribute to design education, be it sometimes without the support of computer technology.
keywords Case-Based Design, Design Education
series eCAADe
email
last changed 2022/06/07 07:50

_id 0b68
authors Ibáñez, José Enrique and Santos, Laura
year 1999
title Utilización de un programa didáctico para la formación de desarrolladores, arquitectos, ingenieros y diseñadores (Use of a Didactic Program for the Training of Developers, Architects, Engineers and Designers)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 352-356
summary For those questions of the specialisation, the Informaitc engineers develop applications of digital graphic destined to designers, users that, in general, ignore with the chore of developing applications. Also, most of the designers have to fight with applications that do not contemplate their necessities neither translates their expressive intentions with clarity. This reciprocal discussion may find an adequate solution in interdisciplinary work. The fecundity, and until the possibility, of the internal dialogue of these teams will depend, between other looks, of the quantity of common concepts that they possess. In this sense, we focused our educational task opposite the future engineers. We understand that, at the same time, the actual education of the designer, in whatever of their multiple looks, should contemplate the basic training (not instrumental but if conceptual) in questions related with the code of the applications that they use. This intellectual effort would enable the digital designer to investigate the topics of personalising their user applications (AutoCAD, CorelDraw, etc.). In this ground, we should greet the admission of the languages of visual code (Delphi, Visual [basic], etc.) that they permit a friendlier development of applications. Its goal is qualify them in order to develop applications of digital graphic, providing them concepts of space understanding and visual training for the production of IT applications of digital graphic.
series SIGRADI
email
last changed 2016/03/10 09:53

_id fb37
authors Knight, T.
year 1999
title Applications in architectural design and education and practice
source Report for the NSF/MIT Workshop on Shape Computation, Cambridge, Mass., 25-26 April 1999
summary Shortly after shape grammars were invented by Stiny and Gips, a two part project for shape grammars was outlined by Stiny. In a 1976 paper,1 Stiny described "two exercises in formal composition". These simple exercises became the foundation for the many applications of shape grammars that followed, and suggested the potential of such applications in education and practice. The first exercise showed how shape grammars could be used in original composition, that is, the creation of new design languages or styles from scratch. The second exercise showed how shape grammars could be used to analyze known or existing design languages. Both exercises illustrated the unique characteristics of the shape grammar formalism that helped motivate a quarter century (almost!) of shape grammar work. General but simple, formal yet intuitive: qualities that continue to make shape grammar disciples and confound skeptics. The history of shape grammar applications in architecture and the arts for the two complementary purposes of synthesis and analysis, as well as for a third, joint purpose is sketched in the first section of this report. These three categories of applications do not have rigid boundaries. They are used in this report mostly as a framework for discussion. An overview of the roles of shape grammar applications in education and practice is given in the second section. New and ongoing issues concerning shape grammars in education and practice are discussed in the last section.
series report
last changed 2003/04/23 15:50

_id 65b4
authors Kos, Jose Ripper
year 1999
title Architecture and Hyperdocument: Data Shaping Space
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 462-465
summary The computer interface can't convey the hole experience of walking through a city or a building. Nevertheless, the complexity of all the aspects involved in those threedimensional spaces can be better understood through the non-linearity of the hyperdocument. Each dweller of a city and a building has many layers of relationship with both. The sequence and the extent each observer explores the space is unique. It’s not totally apprehended in a first visit. As the observer knows better that space, his experience changes. A similar situation takes place in a multimedia application. Hence, it's possible to build an analogy between the architectonic or urban structure and a hyperdocument navigation structure. We can also state that the computer is critical to create paths of architectural information through space and time. The 3D model of a city is a powerful basis to structure the hyperdocument navigation. The city can be viewed in separate parts or layers of information. One investigates the city through different aspects of its configuration and explores it in different scales and levels of detail. The images generated from this 3D model can be combined with video, photo, sound and text, organizing the information which gives form to the city. The navigation through this information, addresses the citty by its economy, housing, religion, politics, leisure, projects, symbolic buildings, and other aspects. This paper will discuss these issues through the experiments of the research done at the School of Architecture and Urbanism of the Universidade Federal do Rio de Janeiro. The research group at the "Laboratory of Urban Analysis and Digital Representation" in PROURB (Graduate Program of Urbanism) analyses the city and its buildings using CD-ROMs and websites.
keywords 3D City Modeling, Hyperdocument, Multimedia, Architecture, Urbanism
series SIGRADI
email
last changed 2016/03/10 09:54

_id 5919
authors Lentz, Uffe
year 1999
title Integrated Design with Form and Topology Optimizing
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 116-121
doi https://doi.org/10.52842/conf.ecaade.1999.116
summary The topic of this paper is to describe the ability of 3D CAD systems to integrate designers and engineers into a simultaneous process developing a functional and aesthetic concept in a close and equal interdisciplinary process. We already have the Finite Element Method, FEM systems for analyzing the mechanical behavior of constructions. This technique is suitable for justifying design aspects in the final part of the design process. A new group of CAE systems under the generic term Topology optimizing has the potentials to handle aspects of conceptual design and aesthetic criteria. Such interactive design tools do not eliminate the designer, but the relationship between the designer and other professions and the professional consciousness of the designer will change. It is necessary to develop common ideas able to connect the scientific and the artistic fields. The common aesthetic values must be clarified and the corresponding formal ideas be developed. These tools could be called "Construction tools for the intelligent user" (Olhoff, 1998) because the use of optimizing is based on a profound knowledge of the techniques.
keywords Form, Topology, Optimizing
series eCAADe
email
last changed 2022/06/07 07:52

_id 81f3
authors Martens, Bob and Turk, Ziga
year 1999
title Working Experiences with a Cumulative Index on CAD: "CUMINCAD"
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 327-333
doi https://doi.org/10.52842/conf.ecaade.1999.327
summary To researchers in every discipline, Internet is quickly becoming the dominating environment to do literature studies. Commercial bibliographic databases tend to be too general, are not up-to-date and require special skills and effort to be searched. On the other hand researchers also publish on the Web and collaboratively that can create indexes of relevant publications. CUMINCAD is a bibliographic index that compiles papers related to computer aided architectural design. Implemented with a database, it allows searching and browsing in the ways usual on the Web. It provides a "historical evolution" to learn from previous efforts and draws attention to older original works that could have been ignored because they could not be found on the Web otherwise. The authors believe that CUMINCAD will help focus future CAAD research and improve the education. CUMINCAD work started in 1998 and is available at www.fagg.uni-lj.si/cumincad/. This paper focusses on the design and development of the database and presents some ideas concerning its advanced use in the analysis of research efforts.
keywords CAAD-related Publications, Web-based Bibliographic Database, Searchable Index, Retrospective CAAD Research
series eCAADe
email
last changed 2022/06/07 07:59

_id 2e50
authors Ozersay, Fevzi and Szalapaj, Peter
year 1999
title Theorising a Sustainable Computer Aided Architectural Education Model
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 186-195
doi https://doi.org/10.52842/conf.ecaade.1999.186
summary The dogmatic structure of architectural education has meant that the production and application of new educational theories, leading to educational models that use computer technology as their central medium of education, is still a relatively under-explored area. Partial models cannot deliver the expected bigger steps, but only bits and pieces. Curricula developments, at many schools of architecture, have been carried out within the closed circuit manner of architectural education, through expanding the traditional curricula and integrating computers into them. There is still no agreed curriculum in schools of architecture, which defines, at least conceptually, the use of computers within it. Do we really know what we are doing? In the words of Aart Bijl; 'If I want to know what I am doing, I need a separate description of my doing it, a theory' [Bijl, 1989]. The word 'sustainability' is defined as understanding the past and responding to the present with concern for the future. Applying this definition to architectural education, this paper aims to outline the necessity and the principles for the construction of a theory of a sustainable computer aided architectural education model, which could lead to an architectural education that is lasting.
keywords Architectural Education, Educational Theories, Computers, Sustainable Models
series eCAADe
email
last changed 2022/06/07 08:00

_id 6285
authors Pratini, Edison
year 1999
title Esboçando com Gestos: O Projeto 3D SketchMaker (Sketching with Gestures: The 3D SketchMaker Project)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 141-144
summary The 3D SketchMaker Project has developed two prototypes for a gestural 3D sketching interface in a computer system to be used in the earliest phases of the design process. The goal of this ongoing research is to provide architects, and other designers involved in object conception, with a 3D gestural instrument that takes advantage of new virtual reality resources and is more natural than using the mouse, less difficult than learning complex software and less abstract than manipulating 2D entities on orthogonal projections. The focus of this project is on the input interface, taking into consideration two factors: First, for many architects and designers, one of the main reasons for not using 3D modeling from the very beginning of the design process is that both current computer hardware and software are hardly appropriate to do the spontaneous and quick drawings that are used to assist in conceptualizing their objects. Second, three-dimensional modeling packages use two-and-three dimensional elements, in a 3D environment, but usually employ 2D input devices that are not appropriate to work in 3D environments, such as mice or pen-and-tablets. The 3D SketchMaker was conceived to take advantage of a natural tendency most people have in using gesture as an aid to language when trying to describe the shape, form or volume of objects. The system is intended to assist or replace the first 2D drawing steps in the design process, generating rough 3D sketches that can be refined later. It is, in essence, a 3D modeling system (a prototype, at this time) directed to do sketching with hand movements and gestures in a virtual reality environment.
series SIGRADI
email
last changed 2016/03/10 09:58

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 36dc
authors Reffat, Rabee M. and Gero, John S.
year 1999
title Situatedness: A New Dimension for Learning Systems in Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 252-261
doi https://doi.org/10.52842/conf.ecaade.1999.252
summary In this paper we adopt the approach that designing is a series of situated acts, ie designing cannot be pre-planned to completion. This is based on ideas from situated cognition theory that claims that what people perceive, how they conceive and what they do develop together and are adapted to the environment. For a system to be useful for human designers it must have the ability to associate what is learned to its environment. In order for a system to do that such a system must be able to acquire knowledge of the environment that a design constructs. Therefore, acknowledging the notion of situatedness is of importance to provide a system with such capability and add on a new dimension to existing learning systems in design. We will call such a learning system within the design domain a Situated Learning Design System (SLDS). A SLDS should be able to create its own situational categories from its perceptual experiences and modify them if encountered again to link the learned knowledge to its corresponding situation. We have chosen architectural shapes as the vehicle to demonstrate our ideas and used multiple representations to build a platform for a SLDS to learn from. In this paper the notion of situatedness and its role in both designing and learning is discussed. The overall architecture of a SLDS is introduced and how the potential outcome of such a system will support human designers while designing is discussed.
keywords Designing, Situated Knowledge, Multiple Representations, Situated Learning
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 11HOMELOGIN (you are user _anon_23356 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002