CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 576

_id 7ccd
authors Augenbroe, Godfried and Eastman, Chuck
year 1999
title Computers in Building: Proceedings of the CAADfutures '99 Conference
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, 398 p.
summary This is the eight CAADfutures Conference. Each of these bi-annual conferences identifies the state of the art in computer application in architecture. Together, the series provides a good record of the evolving state of research in this area over the last fourteen years. Early conferences, for example, addressed project work, either for real construction or done in academic studios, that approached the teaching or use of CAD tools in innovative ways. By the early 1990s, such project-based examples of CAD use disappeared from the conferences, as this area was no longer considered a research contribution. Computer-based design has become a basic way of doing business. This conference is marked by a similar evolutionary change. More papers were submitted about Web- based applications than about any other area. Rather than having multiple sessions on Web-based applications and communications, we instead came to the conclusion that the Web now is an integral part of digital computing, as are CAD applications. Using the conference as a sample, Web-based projects have been integrated into most research areas. This does not mean that the application of the Web is not a research area, but rather that the Web itself is an integral tool in almost all areas of CAAD research.
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 5bce
authors Ceccato, Cristiano
year 1999
title Evolutionary Design Tools for Mass-Customisation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 152-156
summary This paper describes an instance of the author’s ongoing research in the field of Generative Design. The work is based on the premise that computer-aided design (CAD) should evolve beyond its current limitation of one-way interaction, and become a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customised designs which exhibit common features. The understanding of fundamental shape-forming processes in nature inspires us to move beyond the existing CAD paradigms and re-examine the way we can benefit from the computers in design. We can use this knowledge to create a new generation of computer-based design tools which use evolutionary search algorithms to generate create a common family of individual designs optimised according to particular criteria, while supporting our design intuition. The author explores this idea by illustrating a research project between the Hong Kong Polytechnic University and Deakin University (Australia). The project implements a multi-user oriented design tool for evolutionary design, which was tailored to produce a simple object such as door handle. The paper first gives a short historical and philosophical to the work, then describes the technical and algorithmic requirements, and implementation of the system. It concludes by describing an experiment in which the system was used on a "live" test group of people to generate individual, mass-customised designs.
series SIGRADI
email
last changed 2016/03/10 09:48

_id ga0015
id ga0015
authors Daru, R., Vreedenburgh, E. and Scha, R.
year 2000
title Architectural Innovation as an evolutionary process
source International Conference on Generative Art
summary Traditionally in art and architectural history, innovation is treated as a history of ideas of individuals (pioneers), movements and schools. The monograph is in that context one of the most used forms of scientific exercise. History of architecture is then mostly seen as a succession of dominant architectural paradigms imposed by great architectural creators fighting at the beginning against mainstream establishment until they themselves come to be recognised. However, there have been attempts to place architectural innovation and creativity in an evolutionary perspective. Charles Jencks for example, has described the evolution of architectural and art movements according to a diagram inspired by ecological models. Philip Steadman, in his book "The Evolution of Designs. Biological analogy in architecture and the applied arts" (1979), sketches the history of various biological analogies and their impact on architectural theory: the organic, classificatory, anatomical, ecological and Darwinian or evolutionary analogies. This last analogy "explains the design of useful objects and buildings, particularly in primitive society and in the craft tradition, in terms of a sequence of repeated copyings (corresponding to inheritance), with small changes made at each stage ('variations'), which are then subjected to a testing process when the object is put into use ('selection')." However, Steadman has confined his study to a literature survey as the basis of a history of ideas. Since this pioneering work, new developments like Dawkins' concept of memes allow further steps in the field of cultural evolution of architectural innovation. The application of the concept of memes to architectural design has been put forward in a preceding "Generative Art" conference (Daru, 1999), showing its application in a pilot study on the analysis of projects of and by architectural students. This first empirical study is now followed by a study of 'real life' architectural practice. The case taken has a double implication for the evolutionary analogy. It takes a specific architectural innovative concept as a 'meme' and develops the analysis of the trajectory of this meme in the individual context of the designer and at large. At the same time, the architect involved (Eric Vreedenburgh, Archipel Ontwerpers) is knowledgeable about the theory of memetic evolution and is applying a computer tool (called 'Artificial') together with Remko Scha, the authoring computer scientist of the program who collaborates frequently with artists and architects. This case study (the penthouse in Dutch town planning and the application of 'Artificial') shall be discussed in the paper as presented. The theoretical and methodological problems of various models of diffusion of memes shall be discussed and a preliminary model shall be presented as a framework to account for not only Darwinian but also Lamarckian processes, and for individual as well as collective transmission, consumption and creative transformation of memes.
keywords evolutionary design, architectural innovation, memetic diffusion, CAAD, penthouses, Dutch design, creativity, Darwinian and Lamarckian processes
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1b4d
authors Ding, Lan
year 1999
title An Evolutionary Model for Style Representation Emergence in Design
source University of Sydney, Key Centre of Design Computing and Cognition
summary This thesis is concerned with the development of an evolutionary process model for style representation emergence in design. It explores issues involved in the interpretation of style, the concept and process of style representation emergence, an evolutionary approach based on genetic engineering, and its computational implementation. Style is a complex phenomenon in design. Interpreting and formulating design style is a difficult task. This thesis proposes a language model which interprets style space utilising hierarchical levels that map onto syntax and semantics. The style space is then formulated using a genetic description. Current studies have discussed shape semantics emergence in design, but none has been proposed for the emergence of style representation. This thesis provides the concept of style representation emergence with the emphasis on the interpretative aspect of style as well as the emergence process. It explores the emergence process of style representation through an evolutionary approach. Simulation of biological evolution appears to be very useful for design problems. This thesis develops style representation emergence through evolutionary simulation based on genetic engineering. A hierarchical evolutionary process encompassing competition as well as discovery and an evolutionary combination is proposed and developed. A computational representation of style can then be derived by the computer system through the use of this evolutionary process. This model of style representation emergence is applied to traditional Chinese architecture. An evolutionary system is implemented and presented with some examples of traditional Chinese architectural facades. The results from the implementation of the system are analysed and the utility of this model is investigated. The implementation is developed in a Unix environment using the C language. The AutoCAD package is used for the graphic representation.

series thesis:PhD
email
last changed 2003/05/15 07:25

_id ga0009
id ga0009
authors Lewis, Matthew
year 2000
title Aesthetic Evolutionary Design with Data Flow Networks
source International Conference on Generative Art
summary For a little over a decade, software has been created which allows for the design of visual content by aesthetic evolutionary design (AED) [3]. The great majority of these AED systems involve custom software intended for breeding entities within one fairly narrow problem domain, e.g., certain classes of buildings, cars, images, etc. [5]. Only a very few generic AED systems have been attempted, and extending them to a new design problem domain can require a significant amount of custom software development [6][8]. High end computer graphics software packages have in recent years become sufficiently robust to allow for flexible specification and construction of high level procedural models. These packages also provide extensibility, allowing for the creation of new software tools. One component of these systems which enables rapid development of new generative models and tools is the visual data flow network [1][2][7]. One of the first CG packages to employ this paradigm was Houdini. A system constructed within Houdini which allows for very fast generic specification of evolvable parametric prototypes is described [4]. The real-time nature of the software, when combined with the interlocking data networks, allows not only for vertical ancestor/child populations within the design space to be explored, but also allows for fast "horizontal" exploration of the potential population surface. Several example problem domains will be presented and discussed. References: [1] Alias | Wavefront. Maya. 2000, http://www.aliaswavefront.com [2] Avid. SOFTIMAGE. 2000, http://www.softimage.com [3] Bentley, Peter J. Evolutionary Design by Computers. Morgan Kaufmann, 1999. [4] Lewis, Matthew. "Metavolve Home Page". 2000, http://www.cgrg.ohio-state.edu/~mlewis/AED/Metavolve/ [5] Lewis, Matthew. "Visual Aesthetic Evolutionary Design Links". 2000, http://www.cgrg.ohio-state.edu/~mlewis/aed.html [6] Rowley, Timothy. "A Toolkit for Visual Genetic Programming". Technical Report GCG-74, The Geometry Center, University of Minnesota, 1994. [7] Side Effects Software. Houdini. 2000, http://www.sidefx.com [8] Todd, Stephen and William Latham. "The Mutation and Growth of Art by Computers" in Evolutionary Design by Computers, Peter Bentley ed., pp. 221-250, Chapter 9, Morgan Kaufmann, 1999.    
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c991
authors Moorhouse, Jon and Brown,Gary
year 1999
title Autonomous Spatial Redistribution for Cities
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 678-684
doi https://doi.org/10.52842/conf.ecaade.1999.678
summary The paper investigates an automated methodology for the appropriate redistribution of usable space in distressed areas of inner cities. This is achieved by categorising activity space and making these spaces morphologically mobile in relation to the topography within a representative artificial space. The educational module has been influenced by theories from the natural environment, which possess patterns that have inherent evolutionary programmes in which the constituents are recyclable, Information is strategically related to the environment to produce forms of growth and behaviour. Artificial landscape patterns fail to evolve, the inhabited landscape needs a means of starting from simplicity and building into the most complex of systems that are capable of re-permutation over time. The paper then describes the latest methodological development in terms of a shift from the use of the computer as a tool for data manipulation to embracing the computer as a design partner. The use of GDL in particular is investigated as a facilitator for such generation within a global, vectorial environment.
keywords Animated, Urban, Programme, Education, Visual Database
series eCAADe
email
last changed 2022/06/07 07:58

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e199
authors Simondetti, Alvise
year 1999
title Remote Computer Generated Physical Prototyping Based Design
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 229-236
summary This research explores some of the opportunities offered by the field of computer aided design. It differs from much of the research in the field in the sense that it extends beyond the boundaries of the computer screen by building and testing a computational and communication design environment made of computers, computer peripherals and digital communication devices. From our observation of the designer's interaction with the computer generated physical prototyping systems we were able to confirm the unique haptic feedback and understanding of complex three- dimensional geometry. We also found limitations of the environment in relation to evolutionary design. It was clear from those experiments with algorithmically generated design alternatives that potentially terrific opportunities lies in their combination with computer generated physical prototypes and manufacturing systems.
series AVOCAAD
last changed 2005/09/09 10:48

_id b5a1
authors Snijder, H.P.S. and Daru, R.
year 1999
title Representing Floorplans for Interactive Evolutionary Design
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 343-346
summary Computer tools that provide support in the early explorative phase of architectural design are rare. In order to explore the solution space of a design problem, architects in general rely on the use of paper and pencil. We are developing a system which will assist the designer in the exploration of a particular design problem, focusing initially on 2D floorplans. The format chosen for this system is one in which the computer, in interaction with the designer, "evolves" designs. A major obstacle associated with the use of an evolutionary approach is the adequate representation of a floorplan in a genome. We propose a tree-structure in which the nodes represent organising-principles that dictate how the leaves attached to it are organised. Figure 1 shows an example of a tree with four levels; the terminal nodes represent the elements to be placed. The first level no only represents an organising-principle, but also a contour; this contour is either fixed (e.g. dictated by the environment) or free to evolve. On either side of the tree-structure two interpretations of this tree are shown.
series AVOCAAD
last changed 2005/09/09 10:48

_id 44c0
authors Van Leeuwen, Jos P.
year 1999
title Modelling architectural design information by features : an approach to dynamic product modelling for application in architectural design
source Eindhoven University of Technology
summary Architectural design, like many other human activities, benefits more and more from the ongoing development of information and communication technologies. The traditional paper documents for the representation and communication of design are now replaced by digital media. CAD systems have replaced the drawing board and knowledge systems are used to integrate expert knowledge in the design process. Product modelling is one of the most promising approaches in the developments of the last two decades, aiming in the architectural context at the representation and communication of the information related to a building in all its aspects and during its complete life-cycle. However, after studying both the characteristics of the product modelling approach and the characteristics of architectural design, it is concluded in this research project that product modelling does not suffice for support of architectural design. Architectural design is characterised mainly as a problem solving process, involving illdefined problems that require a very dynamic way of dealing with information that concerns both the problem and emerging solutions. Furthermore, architectural design is in many ways an evolutionary process. In short term this is because of the incremental approach to problem solving in design projects; and in long term because of the stylistic development of designers and the continuous developments in the building and construction industry in general. The requirements that are posed by architectural design are concentrated in the keywords extensibility and flexibility of the design informationmodels. Extensibility means that designers can extend conceptual models with definitions that best suit the design concepts they wish to utilise. Flexibility means that information in design models can be structured in a way that accurately represents the design rationale. This includes the modelling of incidental characteristics and relationships of the entities in the model that are not necessarily predefined in a conceptual model. In general, product modelling does not adequately support this dynamic nature of design. Therefore, this research project has studied the concepts developed in the technology of Feature-based modelling, which originates from the area of mechanical engineering. These concepts include the usage of Features as the primitives for defining and reasoning about a product. Features have an autonomous function in the information model, which, as a result, constitutes a flexible network of relationships between Features that are established during the design process. The definition of Features can be specified by designers to formalise new design concepts. This allows the design tools to be adapted to the specific needs of the individual designer, enlarging the library of available resources for design. In addition to these key-concepts in Feature-based modelling as it is developed in the mechanical engineering context, the project has determined the following principles for a Feature-based approach in the architectural context. Features in mechanical engineering are used mainly to describe the lowest level of detail in a product's design, namely the characteristics of its parts. In architecture the design process does not normally follow a strictly hierarchical approach and therefore requires that the building be modelled as a whole. This implies that multiple levels of abstraction are modelled and that Features are used to describe information at the various abstraction levels. Furthermore, architectural design involves concepts that are non-physical as well as physical; Features are to be used for modelling both kinds. The term Feature is defined in this research project to reflect the above key-concepts for this modelling approach. A Feature is an autonomous, coherent collection of information, with semantic meaning to a designer and possibly emerging during design, that is defined to formalise a design concept at any level of abstraction, either physical or non-physical, as part of a building model. Feature models are built up entirely of Features and are structured in the form of a directed graph. The nodes in the graph are the Features, whereas the arcs are the relationships between the Features. Features can be of user-defined types and incidental relationships can be added that are not defined at the typological level. An inventory in this project of what kind of information is involved in the practice of modelling architectural design is based on the analysis of a selection of sources of architectural design information. This inventory is deepened by a case study and results in the proposition of a categorisation of architectural Feature types.
keywords Automated Management Information Systems; Computer Aided Architectural Design; Information Systems; Modelling
series thesis:PhD
email
more http://www.ds.arch.tue.nl/jos/thesis/
last changed 2003/02/12 22:37

_id 0f1e
authors Barrionuevo, Luis F.
year 1999
title Posicionamiento de Volúmenes Arquitectónicos Mediante Algoritmos Evolucionistas (Positioning of Architectural Volumes by Means of Evolutionist Algorithms)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 176-181
summary Configurational studies involve the groups of elements fulfilling restrictions defined by the designer in Architectural design. According to its necessities and intentions, the planner distributes the components of the group in a certain tridimensional way, establishing a composition. This operative procedure implies a classification system according to typologies that respond to a bigger system, and this in turn to another, until the whole is obtained. From the beginning the pattern should satisfy form restrictions, as well as dimensional and positional restrictions for each part that conforms the whole. Functional requirements are attended for each object satisfying relationships of connectivity and adjacency among them. In this work the parts are restricted by their relative position to a central element. Evolutionary Algorithms (EA) are used to solve this type of problem. Using evolutionary metaphors they originate concepts such as "genes", "chromosomes", "mutation", "crosses” and " population " (among other), which come closer to one of the solutions looked for by the designer, under combinatory stochastic methods. The most appropriate use of EA corresponds to problems of complexity NP-completeness (for example, problems of generation of cases of composition), allowing an efficient although not exhaustive analysis. Applying this technique to the generation of architectural volumes, some obtained results are exemplified.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 616c
authors Bentley, Peter J.
year 1999
title The Future of Evolutionary Design Research
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 349-350
summary The use of evolutionary algorithms to optimise designs is now well known, and well understood. The literature is overflowing with examples of designs that bear the hallmark of evolutionary optimisation: bridges, cranes, electricity pylons, electric motors, engine blocks, flywheels, satellite booms -the list is extensive and evergrowing. But although the optimisation of engineering designs is perhaps the most practical and commercially beneficial form of evolutionary design for industry, such applications do not take advantage of the full potential of evolutionary design. Current research is now exploring how the related areas of evolutionary design such as evolutionary art, music and the evolution of artificial life can aid in the creation of new designs. By employing techniques from these fields, researchers are now moving away from straight optimisation, and are beginning to experiment with explorative approaches. Instead of using evolution as an optimiser, evolution is now beginning to be seen as an aid to creativity -providing new forms, new structures and even new concepts for designers.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9913
id ga9913
authors Ceccato, Cristiano and Liauw, Laurence
year 1999
title Parametric Urbanism: Explorations in Generative Urban Design
source International Conference on Generative Art
summary This paper is the result of several years of research by the Authors into the new field of generative design, as applied to urbanism. Its purpose is to formulate a concept of parametric urbanism and data-driven urban design, and how it departs from existing concepts of urban analysis and resulting design methods. This paper first gives a definition and description of the notion of generative urban design, and its relevance to current the practice of architecture and global political, sociological and economic developments. The difference between dogmatic forms of urban design and new parametric research methods is explained, and the Authors argue the fundamental relevance of using examples of post-colonial large-scale projects. In support of this, the Authors explore the widening field of research into parametric and data-driven architecture and urban design and the history of rule-based and evolutionary design methodologies. The paper illustrates examples of successful research in the field of parametric and rule-based urban design, by the Authors as well as colleagues within the field. It surveys the Authors’ work done at the Architectural Association School of Architecture, at the Hong Kong Polytechnic University School of Design, as well as in practice and research-oriented consultancy. The projects illustrated support the thesis of parametric urbanism by showing its power and versatility when applied to very large-scale projects, in particular within the People’s Republic of China.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9920
id ga9920
authors Daru, Roel
year 1999
title Hunting Design Memes in the Architectural Studio, student projects as a source of memetic analysis
source International Conference on Generative Art
summary The current practice in design programming is to generate forms based on preconceptions of what architectural design is supposed to be. But to offer adequate morphogenetic programs for architectural design processes, we should identify the diversity of types of cultural replicators applied by a variety of architectural designers. In order to explore the variety of replicators actually used, around hundred 4th year architectural students were asked to analyse two or three of their own past design assignments. The students were invited to look for the occurrence of evolutionary design processes. They were requested to try and find some traces of 'transmission', 'variation' and 'selection' in their own design assignments. The paper will present an overview of their answers, the arguments applied and the diversity of the found types of verbal and visual design memes as cultural replicators. A discussion about the applicability of the found results in the genotypes and phenotypes of morphogenetic design software will conclude the presentation.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 5377
authors Frazer, J.H., Tang, M.X. and Jian, S.
year 1999
title Towards a Generative System for Intelligent Design Support
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 285-294
doi https://doi.org/10.52842/conf.caadria.1999.285
summary In the development of intelligent computer aided design systems, three important issues need to considered. These issues are: how to support the generation of product concepts using evolutionary computation techniques; how to use intelligent databases and constraint management systems for detailed exploration of product embodiment; and how to integrate rapid prototyping facilities for product evaluation. In this paper, we present a brief review of knowledge based design and evolutionary design and discuss ways of integrating both in the development of a generative design system. Based on this review, we present the model and its applications of a generative design system utilizing a number of AI and evolutionary computation techniques. This generative design model is intended to provide a generic computational framework for the development of intelligent design support systems.
series CAADRIA
email
last changed 2022/06/07 07:50

_id b9d3
authors Galán, B., Argumedo, C. and Paganini, A.
year 1999
title Possibilities of the Computer for the Simulation of the Designer's Constructive Strategies
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 74-78
summary The dynamic analysis (prospective), of products and systems, it is a methodological resource of the design that allows synthetically, and with great economy of investigation resources and time, to put in evidence the tendencies in the evolution of the object. Finally, the design strategies are defined as postures in front of these tendencies of evolution of the significant variables in the cycle of the product. Having as theoretical context the theory of systems,we explored the dynamic analysis of products and systems, taking their evolution along a temporary series that embraces a complete cycle, from the birth of the object until their maturation in the period of saturation of the market. Starting from the analysis of the evolution of the diverse subsystems, and the conflicts among the world of the necessities, (as pressure exercised from the context), and the technical agreement, it shows the evolutionary dynamics,the underlying conflicts to the logic of the system for each product. They are revealed to the design like a cultural operation that should keep in mind the processes of transformation of the mental representations of the object whose evolution should respect certain rules for its as, clearly such as the well-known maya threshold, (most advanced, yet accepted).
series SIGRADI
email
last changed 2016/03/10 09:52

_id c91a
authors Gero, J.S. and Kazakov, V.
year 1999
title Adapting evolutionary computing for exploration in creative designing
source J.S. Gero and M.L. Maher (Eds.), Computational Models of Creative Design IV, Key Centre of Design Computing and Cognition, University of Sydney, Sydney, Australia, pp. 175-186
summary This paper introduces a modification to genetic algorithms which provides computational support to creative designing by adaptively exploring design structure spaces. This modification is based on the re-interpretation of the GA's crossover as a random sampling of interpolations and its replacement with the random sampling of direct phenotype-phenotype interpolation and phenotype-phenotype extrapolation. Examples of the process are presented
keywords Creative Design, Evolutionary Computation
series other
email
last changed 2003/04/06 09:11

_id b8c3
authors Rosenman, M.A. and Gero, J.S.
year 1999
title Evolving designs by generating useful complex gene structures
source P. Bentley (Ed.), Evolutionary Design by Computers, Morgan Kaufmann, San Francisco, pp. 345-364
summary This chapter presents two examples of work for evolving designs by generating useful complex gene structures. where the first example uses a genetic engineering approach whereas the other uses a growth model of form. Both examples have as their motivation to overcome the combinatorial effect of large design spaces by focussing the search in useful areas. This focussing is achieved by starting with design spaces defined by low-level basic genes and creating design spaces defined by increasingly more complex gene structures. In both cases the low-level basic genes represent simple design actions which when executed produce parts of design solutions. Both works are exemplified in the domain of architectural floor plans.
keywords Evolutionary Systems, Genetic Engineering
series other
email
last changed 2003/04/06 09:22

_id ga9902
id ga9902
authors Soddu, Celestino
year 1999
title Recognizability of designer imprinting in Generative artwork
source International Conference on Generative Art
summary Design lives within two fundamental stages, the creative and the evolutionary. The first is that of producing the idea: this approach is built activating a logical jump between the existing and possible worlds that represent our wishes and thoughts. A design idea is the identification of a set of possibilities that goes beyond specific "solutions" but identifies the sense or the attainable quality. The field involved in this design stage is "how" the world may be transformed, not what the possible scenario may be. The second is the evolutionary stage, that of the development of the idea. This approach runs inside paths of refinement and increases in complexity of the projects. It involves the management of the project to reach the desired quality.Generative design is founded on the possibility to clearly separate the creative and the evolutionary stages of the idea. And the first is reserved for man (because creative processes, being activated from subjective interpretations and being abduptive paths and not deductive, inductive or analytical ones, can not be emulated by machines) and the second may be carried out using artificial devices able to emulate logical procedures. The emulation of evolutionary logics is useful for a very simple reason: for getting the best operative design control on complexity. Designers know very well that the quality of a project depends, very importantly, on the time spent designing. If the time is limited, the project can not evolve enough to attain the desired quality. If the available time is increased, the project acquires a higher quality due to the possibility of crossing various parallel evolutionary paths, to develop these and to verify their relative potential running through the cycle idea/evolution more times and in progress. (scheme1) This is not all. In a time-limited design activity, the architect is pressed into facing the formalization of performance requirements in terms of answering directly specific questions. He is pressed into analytically systematizing the requirements before him to quickly work on the evolution of the project. The design solution can be effective but absolutely not flexible. If the real need of the user is, even slightly, different to the hypothesized requirement, the quality of the project, as its ability to respond to needs, breaks down. Projects approached in this way, which we could call "analytical", are quickly obsolete, being tied up to the flow of fashion. A more "creative" approach, where we don't try to accelerate (therby simplifying) the design development path "deducting" from the requirements the formalization choices but we develop our idea using the requirements and the constraints as opportunities of increasing the complexity of the idea, enriching the design development path to reach a higher quality, needs, without doubt, more time. As well as being, of course, a creative and non-analytical approach. This design approach, which is "the" design path, is a voyage of discovery that is comparable to that of scientific research. The fundamental structure is the idea as a "not deducted" hypothesis concerning a quality and recognizability of attainable artwork, according to the architect's "subjective" point of view. The needs and the constraints, identified as fields of possible development of the project, are opportunities for the idea to develop and acquire a specific identity and complexity. Once possible scenarios of a project are formed, the same requirements and constraints will take part, as "verification of congruity", of the increase in quality. Then the cycle, once more, will be run again to reach more satisfactory results. It is, without doubt, an approach that requires time.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_720464 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002