CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 629

_id 53f0
authors Richens, Paul and Trinder, Michael
year 1999
title Exploiting the Internet to Improve Collaboration between Users and Design Team: The Case of the New Computer Laboratory at the University of Cambridge
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 31-47
summary Cambridge University and Microsoft are building a shared computer research and teaching laboratory on a green-field site to the west of the city. The clients wished to use internet based communication between themselves and their architects, including email, a web site and virtual reality. We explain how this is to be achieved, and describe experiences during the first six months of a two year project. Particularly successful has been the use of games software (Quake 11) for 3d presentation of the emerging building design.
keywords Collaborative Design, Internet, Virtual Reality
series CAAD Futures
email
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2006/11/07 07:22

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4b48
authors Dourish, P.
year 1999
title Where the Footprints Lead: Tracking down other roles for social navigation
source Social Navigation of Information Space, eds. A. Munro, K. H. and D Benyon. London: Springer-Verlag, pp 15-34
summary Collaborative Filtering was proposed in the early 1990's as a means of managing access to large information spaces by capturing and exploiting aspects of the experiences of previous users of the same information. Social navigation is a more general form of this style of interaction, and with the widening scope of the Internet as an information provider, systems of this sort have rapidly moved from early research prototypes to deployed services in everyday use. On the other hand, to most of the HCI community, the term social navigation" is largely synonymous with "recommendation systems": systems that match your interests to those of others and, on that basis, provide recommendations about such things as music, books, articles and films that you might enjoy. The challenge for social navigation, as an area of research and development endeavour, is to move beyond this rather limited view of the role of social navigation; and to do this, we must try to take a broader view of both our remit and our opportunities. This chapter will revisit the original motivations, and chart something of the path that recent developments have taken. Based on reflections on the original concerns that motivated research into social navigation, it will explore some new avenues of research. In particular, it will focus on two. The first is social navigation within the framework of "awareness" provisions in collaborative systems generally; and the second is the relationship of social navigation systems to spatial models and the ideas of "space" and "place" in collaborative settings. By exploring these two ideas, two related goals can be achieved. The first is to draw attention to ways in which current research into social navigation can be made relevant to other areas of research endeavour; and the second is to re-motivate the idea of "social navigation" as a fundamental model for collaboration in information-seeking."
series other
last changed 2003/04/23 15:50

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.374
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id 125a
authors Dikbas, Attila
year 1999
title An Evaluating Model for the Usage of Web-based Information Technology in Computer Aided Architectural Design and Engineering Education
doi https://doi.org/10.52842/conf.ecaade.1999.349
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 349-352
summary New technologies often reshape expectations, needs and Opportunities so as to develop strategic Plans for the implementation of Information Techniques in education and research. The widespread acceptance of the internet and more specifically the World Wide Web (WWW) has raised the awareness of educators to the potential for online education, virtual classrooms and even virtual universities. With the advent of computer mediated communication, especially the widespread adoption of the web as a publishing medium, educators see the advantages and potential of delivering educational material over the Internet. The Web offers an excellent medium for content delivery with full text, colour graphics support and hyperlinks. The Purpose of this paper is to present a model for the usage of web-based information technology in computer aided architectural design and engineering education. It involves the key features of a full educational system that is capable of offering the teacher and the student flexibility with which to approach their teaching and learning tasks in ways most appropriate to the architectural design and engineering education. Web-based educational system aims at creating quality in on-line educational materials taking collaboration, support, new skills, and, most of all, time. The paper concludes with a discussion of the benefits of such an education system suggesting directions for further work needed to improve the quality of architectural design and engineering education.
keywords Web-based Information Technology, Online Education, Virtual Campus, Computer Aided Architectural Design, Engineering Education
series eCAADe
last changed 2022/06/07 07:55

_id 2145
authors Engeli, Maia and Mueller Andre
year 1999
title Digital Environments for Learning and Collaboration Architecture, Communication, Creativity, Media and Design Process
doi https://doi.org/10.52842/conf.acadia.1999.040
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 40-52
summary Digital networks are gaining importance as environments for learning and creative collaboration. Technical achievements, software enhancements, and a growing number of applicable principles make it possible to compile complex environments that satisfy many aspects necessary for creative collaboration. This paper focuses on three issues: the architecture of collaborative environments, communication in these environments and the processes inherent to creative collaboration. The information architecture of digital environments looks different from physical architecture, mainly because the material that it is made out of is information and not stone, wood or metal and the goal is to pro-vide appropriate paths and views to information. Nonetheless, many analogies can be drawn between information architecture and physical architecture, including the need for useability, aesthetics, and consistency. To communicate is important for creative collaboration. Digital networks request and enable new strategies for communicating. Regarding the collaborative creative process we have been able to detect principles and features that enhance this process, but there are still many unanswered questions. For example, the environment can enable and improve the frequency of surprise and coincidence, two factors that often play decisive roles in the creative processes but cannot be planned for in advance. Freedom and transparency within the environment are other important factors that foster creative collaboration. The following findings are based on numerous courses, which we have taught using networked environments and some associated, research projects that helped to verify their applicability for architectural practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id 993c
authors Fruchter, Renate
year 1999
title A/E/C Teamwork: A Collaborative Design and Learning Space
source Journal of Computing in Civil Engineering -- October 1999 -- Volume 13, Issue 4, pp. 261-269
summary This paper describes an ongoing effort focused on combined research and curriculum development for multidisciplinary, geographically distributed architecture/engineering/construction (A/E/C) teamwork. Itpresents a model for a distributed A/E/C learning environment and an Internet-based Web-mediated collaboration tool kit. The distributed learning environment includes six universities from Europe, Japan, andthe United States. The tool kit is aimed to assist team members and owners (1) capture and share knowledge and information related to a specific project; (2) navigate through the archived knowledge andinformation; and (3) evaluate and explain the product's performance. The A/E/C course offered at Stanford University acts as a testbed for cutting-edge information technologies and a forum to teach newgenerations of professionals how to team up with practitioners from other disciplines and take advantage of information technology to produce a better, faster, more economical product. The paper presents newassessment metrics to monitor students' cross-disciplinary learning experience and track programmatic changes. The paper concludes with challenges and quandaries regarding the impact of informationtechnologies on team performance and behavior.
series journal paper
last changed 2003/05/15 21:45

_id ab9c
authors Kvan, Thomas and Kvan, Erik
year 1999
title Is Design Really Social
source International Journal of Virtual Reality, 4:1
summary There are many who will readily agree with Mitchell's assertion that "the most interesting new directions (for computer-aided design) are suggested by the growing convergence of computation and telecommunication. This allows us to treat designing not just as a technical process... but also as a social process." [Mitchell 1995]. The assumption is that design was a social process until users of computer-aided design systems were distracted into treating it as a merely technical process. Most readers will assume that this convergence must and will lead to increased communication between design participants, that better social interaction leads to be better design. The unspoken assumption appears to be that putting the participants into an environment with maximal communication channels will result in design collaboration. The tools provided, therefore, must permit the best communication and the best social interaction. We see a danger here, a pattern being repeated which may lead us into less than useful activities. As with several (popular) architectural design or modelling systems already available, however, computer system implementations all too often are poor imitations manual systems. For example, few in the field will argue with the statement that the storage of data in layers in a computer-aided drafting system is an dispensable approach. Layers derive from manual overlay drafting technology [Stitt 1984] which was regarded as an advanced (manual) production concept at the time many software engineers were specifying CAD software designs. Early implementations of CAD systems (such as RUCAPS, GDS, Computervision) avoided such data organisation, the software engineers recognising that object-based structures are more flexible, permitting greater control of data editing and display. Layer-based systems, however, are easier to implement in software, more familiar to the user and hence easier to explain, initially easier to use but more limiting for an experienced and thoughtful user, leading in the end to a lesser quality in resultant drawings and significant problems in output control (see Richens [1990], pp. 31-40 for a detailed analysis of such features and constraints). Here then we see the design for architectural software faithfully but inappropriately following manual methods. So too is there a danger of assuming that the best social interaction is that done face-to-face, therefore all collaborative design communications environments must mimic face-to-face.
series journal paper
email
last changed 2003/05/15 10:29

_id 2a47
authors Mortola, E., Giangrande, A., Mirabelli, P. and Fortuzzi, A.
year 1999
title Interactive Didactic Modules for On-Line Learning via Internet
doi https://doi.org/10.52842/conf.ecaade.1999.273
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 273-278
summary On-line learning can become a very efficient method of teaching in the University of the future. The Students can plan their curricula by selecting the offers of some universities coordinated that meet their specific aims. The communication interchange between student and teacher can be enriched through new forms of interaction via network technology. Laboratories of interactive design, which involve the participation of citizens, can become a good occasion to learn designing linked to the human needs. The architect who is interested in the sustainable development has to consider local needs and interact with users to build a new environment full of local values.
keywords On-Line Learning, Internet, Teaching Modules, Participation, Collaborative Design, Neighbourhood Municipal Laboratories
series eCAADe
email
more http://rmac.arch.uniroma3.it
last changed 2022/06/07 07:58

_id becb
authors Anders, Peter
year 1999
title Electronic Extension: Some implications of cyberspace for the practice of architecture
doi https://doi.org/10.52842/conf.acadia.1999.276
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 276-289
summary This white-paper builds upon previous research to present hybrids of electronic and physical spaces as extensions of current design practice. It poses an hypothetical project - a hybrid of physical and cyberspaces - to be developed through an extrapolation of current architectural practice by fully exploiting new information technologies. The hybrid's attributes not only affect the scope of development but the very activities of the design team and client during - and after - deployment. The entire life cycle of the project is affected by its dual material and media presence. The paper concludes by discussing the effect the hybrid - here called a "cybrid" - on the occupant, and its local and global communities. It reviews the economics, administration, marketing, operation, flexibility, and extension of the project to assess its effects on these scales. The conclusions are provisional owing to the youth of the technologies. However, in laying out these issues, the author hopes to begin a discussion on effects computation will have on our built environment.
series ACADIA
email
last changed 2022/06/07 07:54

_id bacd
authors Abadí Abbo, Isaac
year 1999
title APPLICATION OF SPATIAL DESIGN ABILITY IN A POSTGRADUATE COURSE
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 75-82
summary Spatial Design Ability (SDA) has been defined by the author (1983) as the capacity to anticipate the effects (psychological impressions) that architectural spaces or its components produce in observers or users. This concept, which requires the evaluation of spaces by the people that uses it, was proposed as a guideline to a Masters Degree Course in Architectural Design at the Universidad Autonoma de Aguascalientes in Mexico. The theory and the exercises required for the experience needed a model that could simulate spaces in terms of all the variables involved. Full-scale modeling as has been tested in previous research, offered the most effective mean to experiment with space. A simple, primitive model was designed and built: an articulated ceiling that allows variation in height and shape, and a series of wooden panels for the walls and structure. Several exercises were carried out, mainly to experience cause -effect relationships between space and the psychological impressions they produce. Students researched into spatial taxonomy, intentional sequences of space and spatial character. Results showed that students achieved the expected anticipation of space and that full-scale modeling, even with a simple model, proved to be an effective tool for this purpose. The low cost of the model and the short time it took to be built, opens an important possibility for Institutions involved in architectural studies, both as a research and as a learning tool.
keywords Spatial Design Ability, Architectural Space, User Evaluation, Learning, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 11:27

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id f154
authors Amor, Robert and Newnham, Leonard
year 1999
title CAD Interfaces to the ARROW Manufactured Product Server
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 1-11
summary The UK national project ARROW (Advanced Reusable Reliable Objects Warehouse) provides an Internet based framework through which it is possible to identify any of a range of manufactured products meeting specific design criteria. This open framework (based upon the IAI's IFCs) provides a mechanism for users to search for products from any participating manufacturer or supplier based both on specific attributes of a product or on any of the textual descriptions of the product. The service returns the closest matching products and allows the user to navigate to related information including manufacturer, suppliers, CAD details, VR displays, installation instructions, certificates, health and safety information, promotional information, costings, etc. ARROW also provides a toolkit to enable manufacturers and suppliers to more easily map and publish their information in the format utilised by the ARROW system. As part of the ARROW project we have examined the ability to interface from a design tool through to ARROW to automatically retrieve information required by the tool. This paper describes the API developed to allow CAD and simulation tools to communicate directly with ARROW and identify appropriate manufactured information. The demonstration system enables CAD systems to identify the closest matching manufactured product to a designed product and replacing the designed product with the details supplied by the manufacturer for the manufactured product as well as pulling through product attributes utilised by the design application. This paper provides a description of the ARROW framework and issues faced in providing information based upon standards as well as containing information not currently modelled in public standards. The paper looks at issues of enabling manufacturers and suppliers to move from their current world-view of product information to a more data-rich and user accessible information repository (even though this enables a uniform comparison across a range of manufacturer's products). Finally the paper comments on the likely way forward for ARROW like systems in providing quality information to end users.
keywords Computer-aided Design, Product Retrieval
series CAAD Futures
email
last changed 2006/11/07 07:22

_id edf5
authors Arnold, J.A., Teicholz, P. and Kunz, J.
year 1999
title An approach for the interoperation of web-distributed applications with a design model
source Automation in Construction 8 (3) (1999) pp. 291-303
summary This paper defines the data and inference requirements for the integration of analysis applications with a product model described by a CAD/CAE application. Application input conditions often require sets of complex data that may be considered views of a product model database. We introduce a method that is compatible with the STEP and PLIB product description standards to define an intermediate model that selects, extracts, and validates views of information from a product model to serve as input for an engineering CAD/CAE application. The intermediate model framework was built and tested in a software prototype, the Internet Broker for Engineering Services (IBES). The first research case for IBES integrates applications that specify certain components, for example pumps and valves, with a CAD/CAE application. This paper therefore explores a sub-set of the general problem of integrating product data semantics between various engineering applications. The IBES integration method provides support for a general set of services that effectively assist interpretation and validate information from a product model for an engineering purpose. Such methods can enable application interoperation for the automation of typical engineering tasks, such as component specification and procurement.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 89bb
authors Ataman, Osman and Richey, Thomas
year 1999
title ArchiDATA: A Hypermedia Tool for Architecture
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 496-500
summary Design is a cooperative activity at several levels. At one level, clients, architects, financiers, and construction engineers and contractors, all play important roles in creating the design for the building. At another level, the design team may contain architects, interior and landscape designers, lighting experts, heating, ventilation, and air-conditioning experts, etc. At a third level, individual architects cooperate with computer-based design tools in creating portions of a complex design. This paper describes an ongoing project called ArchiDATA, in which we are developing a computational Case-Based Design Aid (CBDA) for architectural design. This project, which is collaboration between cognitive scientists and architectural researchers, builds on an artificial intelligence paradigm called case-based reasoning and work in post-occupancy evaluation and other case study research in architecture.
series SIGRADI
email
last changed 2016/03/10 09:47

_id bfc2
authors Bessone, Miriam and Mantovani, Graciela
year 1999
title Integración del Medio Digital a la Enseñanza del Diseño Arquitectónico. Huellas de un Taller Experimental (Integration of Digital Media in the Teaching of Architectural Design. Tracks of an Experimental Studio)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 289-294
summary This paper presents the searching of new building modes for the knowledge of design in curriculum workshops at Facultad de Arquitectura, Diseno y Urbanismo of the Universidad Nacional del Litoral the proposed “research action” program articulates longitudinally in the three cycles of the career, understanding architecture as metaknowledge within a new paradigm of subjectivity, complexity and multidimensionality. In other words, it is recognized a new scenery tending to modify didactic relations. This experimental field looks for conscientious equilibrium between “written culture/audiovisual culture”, and “analog instruments/digital media”. We focus our interest on the “machine interacting with and for men”, looking for harmonious synthesis through a new way of thinking, to allow “real progress”. For turning this idea into action, we organized an alternative and plural team-work in architecture. We called it “experimental workshop”. In this first level the students worked. On a preliminary plan of a “kindergarden”. They developed a divergent process through the 3D simulations (using the software 3DS MAX v2), scale models and sensible sketches. For conclusions, the paper addresses the characteristics of the pedagogic model used and the results achieved.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ga9924
id ga9924
authors Cardalda, Juan Jesus Romero J.J.
year 1999
title Artificial Music Composer
source International Conference on Generative Art
summary Traditional Musical Computation Systems had to face the differences between the computational techniques and the characteristics of musical creation. Characteristics such as a high degree of subjectivity, a great irrational component, and a learning process based on the use of examples and environmental absorption, have made music difficult to be formalized through algorithmic methods or classical Artificial Intelligence methods such as Expert Systems. We propose the creation of a cybernetic model of a human composer in a primeval stage of human musical evolution, following a paradigm of cognitive complex models creation, based on the use of the human reference, not only in a static point of view but also considering its evolution through time. Therefore, the proposed system simulates musical creation in one of the first stages of musical evolution, whose main characteristics are the percussive and choral aspects. The system is based on Genetic Algorithms, whose genetic population is integrated by several tribes. This model carries out the task of musical composition, led by the user who expresses his/her musical taste assigning a punctuation to each tribe. The GA selects the worse tribes as individuals to be eliminated. In order to select those tribes which are going to be used as parents, a random function is used, having each tribe a probality proportional to its punctuation. The new tribe is produced by crossing the parent tribes in each individual. Afterwards, mutation takes place in the created individuals. The experiments carried out with this system have proved its functionality in the composition of rhythmic patterns. It is intended to enlarge the experiment's scope by communicating the system via Internet. This would enable its use by users of different musical cultures, taking into account that the system is user-friendly, since it requires no musical knowledge.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 2c1d
authors Castañé, D., Tessier, C., Álvarez, J. and Deho, C.
year 1999
title Patterns for Volumetric Recognition - Guidelines for the Creation of 3D-Models
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 171-175
summary This piece proposes new strategies and pedagogic methodologies applied to the recognition and study of the subjacent measurements of the architectural projects to be created. This proposal is the product of pedagogic experience, which stems from this instructional team of the department of tri-dimensional models of electronic models. This program constitutes an elective track for the architectural major at the college of architecture, design, and urbanism of the University of Buenos Aires and housed at the CAO center. One of the requirements that the students must complete, after doing research and analytical experimentation through the knowledge that they acquired through this course, is to practice the attained skills through exercises proposed by the department in this case, the student would be required to virtually rebuild a paradigmatic architectonic piece of several sample architects. Usually at this point, students experience some difficulties when they analyze the existing documents on the plants, views, picture, details, texts, etc., That they have obtained from magazines, books, and other sources. Afterwards, when they digitally begin to generate basic measurements of the architectural work to be modeled, they realize that there are great limitations in the comprehension of the tri-dimensional understanding of the work. This issue has brought us to investigate and develop proposals of volumetric understanding of patterns through examples of work already analyzed and digitalized tri-dimensionally in the department. Through a careful study of the existent documentation for that particular work, it is evaluated which would be the paths and basis to adopt through utilizing alternative technologies to arrive at a clear reconstruction of the projected architectural work, the study gets completed by implementing the proposal at the internet site http://www.datarq.fadu.uba.ar/catedra/dorcas
series SIGRADI
email
last changed 2016/03/10 09:48

_id 1ea1
authors Cheng, Nancy Yen-wen
year 1999
title Digital Design at UO
doi https://doi.org/10.52842/conf.acadia.1999.x.l0k
source ACADIA Quarterly, vol. 18, no. 4, p. 18
summary University of Oregon Architecture Department has developed a spectrum of digital design from introductory methods courses to advanced design studios. With a computing curriculum that stresses a variety of tools, architectural issues such as form-making, communication, collaboration,theory-driven design, and presentation are explored. During the first year, all entering students are required to learn 3D modeling, rendering, image-processing and web-authoring in our Introduction to Architectural ComputerGraphics course. Through the use of cross-platform software, the two hundred beginning students are able to choose to work in either MacOS or Windows. Students begin learning the software by ‘playing’ with geometric elements and further develop their control by describing assigned architectural monuments. In describing the monuments, they begin with 2D diagrams and work up to complete 3D compositions, refining their modelswith symbol libraries. By visualizing back and forth between the drafting and modeling modes, the students quickly connect orthogonal plans and sections with their spatial counterparts. Such connections are an essential foundation for further learning.
series ACADIA
email
last changed 2022/06/07 07:49

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_602567 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002