CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 190

_id 5007
authors Elezkurtaj, Tomor and Franck, Georg
year 1999
title Genetic Algorithms in Support of Creative Architectural Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 645-651
doi https://doi.org/10.52842/conf.ecaade.1999.645
summary The functions supported by commercial CAAD software are drawing, construction and presentation. Up to now few programs supporting the creative part of architectural problem solving have become available. The grand hopes of symbolic AI to program creative architectural design have been disappointing. In the meantime, methods called referred to as New AI have become available. Such methods includegenetic algorithms (GA). But GA, though successfully applied in other fields of engineering, still waits to be applied broadly in architectural design. A main problem lies in defining function in architecture. It is much harder to define the function of a building than that of a machine. Without specifying the function of the artifact, the fitness function of the design variants participating in the survival game of artificial evolution remains undetermined. It is impossible to fully specify the fitness function of architecture. The approach presented is one of circumventing a full specification through dividing labor between the GA software and its user. The fitness function of architectural ground plans is typically defined in terms only of the proportions of the room to be accommodated and certain topological relations between them. The rest is left to the human designer who interactively intervenes in the evolution game as displayed on the screen.
keywords Genetic Algorithms, Creative Architectural Design
series eCAADe
email
last changed 2022/06/07 07:55

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9924
id ga9924
authors Cardalda, Juan Jesus Romero J.J.
year 1999
title Artificial Music Composer
source International Conference on Generative Art
summary Traditional Musical Computation Systems had to face the differences between the computational techniques and the characteristics of musical creation. Characteristics such as a high degree of subjectivity, a great irrational component, and a learning process based on the use of examples and environmental absorption, have made music difficult to be formalized through algorithmic methods or classical Artificial Intelligence methods such as Expert Systems. We propose the creation of a cybernetic model of a human composer in a primeval stage of human musical evolution, following a paradigm of cognitive complex models creation, based on the use of the human reference, not only in a static point of view but also considering its evolution through time. Therefore, the proposed system simulates musical creation in one of the first stages of musical evolution, whose main characteristics are the percussive and choral aspects. The system is based on Genetic Algorithms, whose genetic population is integrated by several tribes. This model carries out the task of musical composition, led by the user who expresses his/her musical taste assigning a punctuation to each tribe. The GA selects the worse tribes as individuals to be eliminated. In order to select those tribes which are going to be used as parents, a random function is used, having each tribe a probality proportional to its punctuation. The new tribe is produced by crossing the parent tribes in each individual. Afterwards, mutation takes place in the created individuals. The experiments carried out with this system have proved its functionality in the composition of rhythmic patterns. It is intended to enlarge the experiment's scope by communicating the system via Internet. This would enable its use by users of different musical cultures, taking into account that the system is user-friendly, since it requires no musical knowledge.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 616c
authors Bentley, Peter J.
year 1999
title The Future of Evolutionary Design Research
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 349-350
summary The use of evolutionary algorithms to optimise designs is now well known, and well understood. The literature is overflowing with examples of designs that bear the hallmark of evolutionary optimisation: bridges, cranes, electricity pylons, electric motors, engine blocks, flywheels, satellite booms -the list is extensive and evergrowing. But although the optimisation of engineering designs is perhaps the most practical and commercially beneficial form of evolutionary design for industry, such applications do not take advantage of the full potential of evolutionary design. Current research is now exploring how the related areas of evolutionary design such as evolutionary art, music and the evolution of artificial life can aid in the creation of new designs. By employing techniques from these fields, researchers are now moving away from straight optimisation, and are beginning to experiment with explorative approaches. Instead of using evolution as an optimiser, evolution is now beginning to be seen as an aid to creativity -providing new forms, new structures and even new concepts for designers.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id b4d2
authors Caldas, Luisa G. and Norford, Leslie K.
year 1999
title A Genetic Algorithm Tool for Design Optimization
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 260-271
doi https://doi.org/10.52842/conf.acadia.1999.260
summary Much interest has been recently devoted to generative processes in design. Advances in computational tools for design applications, coupled with techniques from the field of artificial intelligence, have lead to new possibilities in the way computers can inform and actively interact with the design process. In this paper we use the concepts of generative and goal-oriented design to propose a computer tool that can help the designer to generate and evaluate certain aspects of a solution towards an optimized behavior of the final configuration. This work focuses mostly on those aspects related to the environmental performance of the building. Genetic Algorithms are applied as a generative and search procedure to look for optimized design solutions in terms of thermal and lighting performance in a building. The Genetic Algorithm (GA) is first used to generate possible design solutions, which are then evaluated in terms of lighting and thermal behavior using a detailed thermal analysis program (DOE2.1E). The results from the simulations are subsequently used to further guide the GA search towards finding low-energy solutions to the problem under study. Solutions can be visualized using an AutoLisp routine. The specific problem addressed in this study is the placing and sizing of windows in an office building. The same method is applicable to a wide range of design problems like the choice of construction materials, design of shading elements, or sizing of lighting and mechanical systems for buildings.
series ACADIA
email
last changed 2022/06/07 07:54

_id 0b84
authors De Silva Garza, Andrés Gómez and Maher, Mary Lou
year 1999
title Evolving Design Layout Cases to Satisfy Feng Shui Constraints
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 115-124
doi https://doi.org/10.52842/conf.caadria.1999.115
summary We present a computational process model for design that combines the functionalities of case-based reasoning (CBR) and genetic algorithms (GAÌs). CBR provides a precedent-based framework in which prior design cases are retrieved and adapted in order to meet the requirements of a new design problem. GAÌs provide a general-purpose mechanism for randomly combining and modifying potential solutions to a new problem repeatedly until an adequate solution is found. In our model we use a GA to perform the case-adaptation subtask of CBR. In this manner, a gradual improvement in the overall quality of the proposed designs is obtained as more and more adaptations of the design cases originally retrieved from memory are evolved. We describe how these ideas can be used to perform layout design of residences such that the final designs satisfy the requirements imposed by feng shui, the Chinese art of placement.
series CAADRIA
email
last changed 2022/06/07 07:55

_id 1b4d
authors Ding, Lan
year 1999
title An Evolutionary Model for Style Representation Emergence in Design
source University of Sydney, Key Centre of Design Computing and Cognition
summary This thesis is concerned with the development of an evolutionary process model for style representation emergence in design. It explores issues involved in the interpretation of style, the concept and process of style representation emergence, an evolutionary approach based on genetic engineering, and its computational implementation. Style is a complex phenomenon in design. Interpreting and formulating design style is a difficult task. This thesis proposes a language model which interprets style space utilising hierarchical levels that map onto syntax and semantics. The style space is then formulated using a genetic description. Current studies have discussed shape semantics emergence in design, but none has been proposed for the emergence of style representation. This thesis provides the concept of style representation emergence with the emphasis on the interpretative aspect of style as well as the emergence process. It explores the emergence process of style representation through an evolutionary approach. Simulation of biological evolution appears to be very useful for design problems. This thesis develops style representation emergence through evolutionary simulation based on genetic engineering. A hierarchical evolutionary process encompassing competition as well as discovery and an evolutionary combination is proposed and developed. A computational representation of style can then be derived by the computer system through the use of this evolutionary process. This model of style representation emergence is applied to traditional Chinese architecture. An evolutionary system is implemented and presented with some examples of traditional Chinese architectural facades. The results from the implementation of the system are analysed and the utility of this model is investigated. The implementation is developed in a Unix environment using the C language. The AutoCAD package is used for the graphic representation.

series thesis:PhD
email
last changed 2003/05/15 07:25

_id ga9916
id ga9916
authors Elzenga, R. Neal and Pontecorvo, Michael S.
year 1999
title Arties: Meta-Design as Evolving Colonies of Artistic Agents
source International Conference on Generative Art
summary Meta-design, the act of designing a system or species of design instead of a design instance, is an important concept in modern design practice and in the generative design paradigm. For meta-design to be a useful tool, the designer must have more formal support for both design species definition/expression and the abstract attributes which the designer is attempting to embody within a design. Arties is an exploration of one possible avenue for supporting meta-design. Arties is an artistic system emphasizing the co-evolution of colonies of Artificial Life design or artistic agents (called arties) and the environment they inhabit. Generative design systems have concentrated on biological genetics metaphors where a population of design instances are evolved directly from a set of ‘parent’ designs in a succession of generations. In Arties, the a-life agent which is evolved, produces the design instance as a byproduct of interacting with its environment. Arties utilize an attraction potential curve as their primary dynamic. They sense the relative attraction of entities in their environment, using multiple sensory channels. Arties then associate an attractiveness score to each entity. This attractiveness score is combined with a 'taste' function built into the artie that is sensitized to that observation channel, entity, and distance by a transfer function. Arties use this attraction to guide decisions and behaviors. A community of arties, with independent evolving attraction criteria can pass collective judgement on each point in an art space. As the Artie moves within this space it modifies the environment in reaction to what it senses. Arties support for Meta-design is in (A) the process of evolving arties, breeding their attraction potential curve parameters using a genetic algorithm and (B) their use of sensory channels to support abstract attributes geometries. Adjustment of these parameters tunes the attraction of the artie along various sensing channels. The multi-agent co-evolution of Arties is one approach to creating a system for supporting meta-design. Arties is part of an on-going exploration of how to support meta-design in computer augmented design systems. Our future work with Arties-like systems will be concerned with applications in areas such as modeling adaptive directives in Architecture, Object Structure Design, spatio-temporal behaviors design (for games and simulations), virtual ambient spaces, and representation and computation of abstract design attributes.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c91a
authors Gero, J.S. and Kazakov, V.
year 1999
title Adapting evolutionary computing for exploration in creative designing
source J.S. Gero and M.L. Maher (Eds.), Computational Models of Creative Design IV, Key Centre of Design Computing and Cognition, University of Sydney, Sydney, Australia, pp. 175-186
summary This paper introduces a modification to genetic algorithms which provides computational support to creative designing by adaptively exploring design structure spaces. This modification is based on the re-interpretation of the GA's crossover as a random sampling of interpolations and its replacement with the random sampling of direct phenotype-phenotype interpolation and phenotype-phenotype extrapolation. Examples of the process are presented
keywords Creative Design, Evolutionary Computation
series other
email
last changed 2003/04/06 09:11

_id bb42
authors Gero, John S. and Kazakov, Vladimir
year 1999
title An Interpolation/Extrapolation Process For Creative Designing
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 263-274
summary This paper introduces a new computational operation that provides support for creative designing by adaptively exploring design state spaces. This modification is based on the re-interpretation of the crossover operation of genetic algorithms as an interpolation and its generalization to extrapolation. Examples of the results of the application of the process are presented.
keywords Creative design, computational exploration, design combination
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ga0009
id ga0009
authors Lewis, Matthew
year 2000
title Aesthetic Evolutionary Design with Data Flow Networks
source International Conference on Generative Art
summary For a little over a decade, software has been created which allows for the design of visual content by aesthetic evolutionary design (AED) [3]. The great majority of these AED systems involve custom software intended for breeding entities within one fairly narrow problem domain, e.g., certain classes of buildings, cars, images, etc. [5]. Only a very few generic AED systems have been attempted, and extending them to a new design problem domain can require a significant amount of custom software development [6][8]. High end computer graphics software packages have in recent years become sufficiently robust to allow for flexible specification and construction of high level procedural models. These packages also provide extensibility, allowing for the creation of new software tools. One component of these systems which enables rapid development of new generative models and tools is the visual data flow network [1][2][7]. One of the first CG packages to employ this paradigm was Houdini. A system constructed within Houdini which allows for very fast generic specification of evolvable parametric prototypes is described [4]. The real-time nature of the software, when combined with the interlocking data networks, allows not only for vertical ancestor/child populations within the design space to be explored, but also allows for fast "horizontal" exploration of the potential population surface. Several example problem domains will be presented and discussed. References: [1] Alias | Wavefront. Maya. 2000, http://www.aliaswavefront.com [2] Avid. SOFTIMAGE. 2000, http://www.softimage.com [3] Bentley, Peter J. Evolutionary Design by Computers. Morgan Kaufmann, 1999. [4] Lewis, Matthew. "Metavolve Home Page". 2000, http://www.cgrg.ohio-state.edu/~mlewis/AED/Metavolve/ [5] Lewis, Matthew. "Visual Aesthetic Evolutionary Design Links". 2000, http://www.cgrg.ohio-state.edu/~mlewis/aed.html [6] Rowley, Timothy. "A Toolkit for Visual Genetic Programming". Technical Report GCG-74, The Geometry Center, University of Minnesota, 1994. [7] Side Effects Software. Houdini. 2000, http://www.sidefx.com [8] Todd, Stephen and William Latham. "The Mutation and Growth of Art by Computers" in Evolutionary Design by Computers, Peter Bentley ed., pp. 221-250, Chapter 9, Morgan Kaufmann, 1999.    
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id b8c3
authors Rosenman, M.A. and Gero, J.S.
year 1999
title Evolving designs by generating useful complex gene structures
source P. Bentley (Ed.), Evolutionary Design by Computers, Morgan Kaufmann, San Francisco, pp. 345-364
summary This chapter presents two examples of work for evolving designs by generating useful complex gene structures. where the first example uses a genetic engineering approach whereas the other uses a growth model of form. Both examples have as their motivation to overcome the combinatorial effect of large design spaces by focussing the search in useful areas. This focussing is achieved by starting with design spaces defined by low-level basic genes and creating design spaces defined by increasingly more complex gene structures. In both cases the low-level basic genes represent simple design actions which when executed produce parts of design solutions. Both works are exemplified in the domain of architectural floor plans.
keywords Evolutionary Systems, Genetic Engineering
series other
email
last changed 2003/04/06 09:22

_id 5b5a
authors Yu, W. and Skibniewski, M.J.
year 1999
title A neuro-fuzzy computational approach to constructability knowledge acquisition for construction technology evaluation
source Automation in Construction 8 (5) (1999) pp. 539-552
summary This paper describes a methodology for constructability knowledge acquisition of construction technologies. The methodology combines a neuro-fuzzy network-based approach with genetic algorithms. The combination of fuzzy logic with learning abilities of neural networks and genetic algorithms may allow for automatic acquisition of constructability knowledge from training examples and for providing understandable explanations for the reasoning process. The proposed methodology can provide a mechanism to trace back factors causing unsatisfactory construction performance and the necessary feedback to construction engineers for technology innovation. An application example is provided to demonstrate the capabilities of the proposed methodology.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 5bce
authors Ceccato, Cristiano
year 1999
title Evolutionary Design Tools for Mass-Customisation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 152-156
summary This paper describes an instance of the author’s ongoing research in the field of Generative Design. The work is based on the premise that computer-aided design (CAD) should evolve beyond its current limitation of one-way interaction, and become a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customised designs which exhibit common features. The understanding of fundamental shape-forming processes in nature inspires us to move beyond the existing CAD paradigms and re-examine the way we can benefit from the computers in design. We can use this knowledge to create a new generation of computer-based design tools which use evolutionary search algorithms to generate create a common family of individual designs optimised according to particular criteria, while supporting our design intuition. The author explores this idea by illustrating a research project between the Hong Kong Polytechnic University and Deakin University (Australia). The project implements a multi-user oriented design tool for evolutionary design, which was tailored to produce a simple object such as door handle. The paper first gives a short historical and philosophical to the work, then describes the technical and algorithmic requirements, and implementation of the system. It concludes by describing an experiment in which the system was used on a "live" test group of people to generate individual, mass-customised designs.
series SIGRADI
email
last changed 2016/03/10 09:48

_id ga9901
id ga9901
authors Dehlinger, H.E.
year 1999
title Minimial generative principles for large scale drawings: an experimental approach and its results
source International Conference on Generative Art
summary The line as an element or linear structures as such can be observed in many circumstances and in many places of our daily life´s. Lines have poly semantic characteristics and the word line is denoting much more than a long thin mark made by a pencil. The concept of a line is a very rich concept, and it seems, each epoch of art is developing its own codes for lines to deposit its world views within them. The emergence of generative approaches is characteristic of our epoch, and it is lines as elements of drawings generated by algorithms, executed on machines, and drawn with a pen equipped plotter on which this work is based.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4fa1
authors Lee, E., Ida, Y., Woo, S. and Sasada, T.
year 1999
title Environmental Design Using Fractals in Computer Graphics
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 533-538
doi https://doi.org/10.52842/conf.ecaade.1999.533
summary Computer graphics have developed efficient techniques for visualisation of the real world. Many of the algorithms have a physical basis, such as computational models for the light and the shadow, models of real objects (buildings, mountains, roads and so on) and the simulation of natural phenomenon. Now computer graphics techniques provide the virtual world with a perception of three dimensions. The concept of the virtual world and its technology have been expanding and intensifying in recent years. Almost everything in the real world has been simulated in virtual world. When it comes to a terrain model, what we need is labour and time. But now it is possible to simulate terrain like the real world using fractals in computer graphics with a very small program and small data set. This study aims to show how to build a real world impression in the virtual world. In this paper the authors suggest a landscape design method and show the results of its application.
keywords Fractals, Polygon-Reduction, Computer Graphics, Virtual World, Collaboration
series eCAADe
last changed 2022/06/07 07:51

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 9HOMELOGIN (you are user _anon_999334 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002