CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 577

_id a875
authors Suwa, M., Gero, J.S. and Purcell, T.
year 1999
title How an Architect Created Design Requirements
source G. Goldschmidt and W. Porter (eds), Design Thinking Research Symposium: Design Representation, MIT, Cambridge, pp. II.101-124
summary There is an anecdotal view that designers, during a conceptual design process, not just synthesise solutions that satisfy initially given requirements, but also create by themselves novel design requirements that capture important aspects of the given problem. Further, it is believed that design sketches serve as a thinking tool for designers to do this. Then, what kinds of cognitive interaction with their own sketches enable designers to create novel requirements? The purpose of this paper is to answer this question. We examined the cognitive processes of a practising architect, using a protocol analysis technique. Our examinations focused on whether particular types of cognitive actions account for the creation of novel design requirements. We found that intensive occurrences of a certain type of perceptual actions, acts of establishing new relations or visual features on the sketches, are likely to co-occur with the creation of requirements. This suggests that this type of perceptual actions are the key constituent of acts of creating novel requirements, and therefore one of the important actions in sketching activities. This presents evidence of the view that designing is a situated act, as well as has an implication for design education.
keywords Design Requirements; Sketches; Design Cognition; Protocol Analysis
series journal paper
email
last changed 2003/03/31 08:37

_id ga9902
id ga9902
authors Soddu, Celestino
year 1999
title Recognizability of designer imprinting in Generative artwork
source International Conference on Generative Art
summary Design lives within two fundamental stages, the creative and the evolutionary. The first is that of producing the idea: this approach is built activating a logical jump between the existing and possible worlds that represent our wishes and thoughts. A design idea is the identification of a set of possibilities that goes beyond specific "solutions" but identifies the sense or the attainable quality. The field involved in this design stage is "how" the world may be transformed, not what the possible scenario may be. The second is the evolutionary stage, that of the development of the idea. This approach runs inside paths of refinement and increases in complexity of the projects. It involves the management of the project to reach the desired quality.Generative design is founded on the possibility to clearly separate the creative and the evolutionary stages of the idea. And the first is reserved for man (because creative processes, being activated from subjective interpretations and being abduptive paths and not deductive, inductive or analytical ones, can not be emulated by machines) and the second may be carried out using artificial devices able to emulate logical procedures. The emulation of evolutionary logics is useful for a very simple reason: for getting the best operative design control on complexity. Designers know very well that the quality of a project depends, very importantly, on the time spent designing. If the time is limited, the project can not evolve enough to attain the desired quality. If the available time is increased, the project acquires a higher quality due to the possibility of crossing various parallel evolutionary paths, to develop these and to verify their relative potential running through the cycle idea/evolution more times and in progress. (scheme1) This is not all. In a time-limited design activity, the architect is pressed into facing the formalization of performance requirements in terms of answering directly specific questions. He is pressed into analytically systematizing the requirements before him to quickly work on the evolution of the project. The design solution can be effective but absolutely not flexible. If the real need of the user is, even slightly, different to the hypothesized requirement, the quality of the project, as its ability to respond to needs, breaks down. Projects approached in this way, which we could call "analytical", are quickly obsolete, being tied up to the flow of fashion. A more "creative" approach, where we don't try to accelerate (therby simplifying) the design development path "deducting" from the requirements the formalization choices but we develop our idea using the requirements and the constraints as opportunities of increasing the complexity of the idea, enriching the design development path to reach a higher quality, needs, without doubt, more time. As well as being, of course, a creative and non-analytical approach. This design approach, which is "the" design path, is a voyage of discovery that is comparable to that of scientific research. The fundamental structure is the idea as a "not deducted" hypothesis concerning a quality and recognizability of attainable artwork, according to the architect's "subjective" point of view. The needs and the constraints, identified as fields of possible development of the project, are opportunities for the idea to develop and acquire a specific identity and complexity. Once possible scenarios of a project are formed, the same requirements and constraints will take part, as "verification of congruity", of the increase in quality. Then the cycle, once more, will be run again to reach more satisfactory results. It is, without doubt, an approach that requires time.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 37d1
authors Corona Martíne, Alfonso and Vigo, Libertad
year 1999
title Before the Digital Design Studio
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 247-252
summary This paper contains some observations which derive from our work as Studio Professors . In the last years, studios are in a transition phase with the progressive introduction of computers in later stages of the design process. The initiative generally belongs to students rather than to studio masters, since the former are aware that a knowledge of CAD systems will make them able to get work in architects offices. It is the first few Studios that will guide the student in forming a conception of what is architecture . Therefore, we have observer more attentively the way in which he establishes his first competence as a designer. We believe it is useful to clarify design training before we can integrate computers into it. The ways we all learn to design and which we transmit in the Studio were obviously created a long time ago, when Architecture became a subject taught in Schools, no longer a craft to be acquired under a master. The conception of architecture that the student forms in his mind is largely dependent on a long tradition of Beaux-Arts training which survives (under different forms) in Modern Architecture. The methods he or she acquires will become the basis of his creative design process also in professional life. Computer programmes are designed to adapt into the stages of this design process simply as time saving tools. We are interested in finding out how they can become an active part in the creative process and how to control this integration in teaching. Therefore, our work deals mainly with the tradition of the Studio and the conditioning it produces. The next step will be to explore the possiblities and restrictions that will inevitably issue from the introduction of new media.
series SIGRADI
email
last changed 2016/03/10 09:49

_id 0b84
authors De Silva Garza, Andrés Gómez and Maher, Mary Lou
year 1999
title Evolving Design Layout Cases to Satisfy Feng Shui Constraints
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 115-124
doi https://doi.org/10.52842/conf.caadria.1999.115
summary We present a computational process model for design that combines the functionalities of case-based reasoning (CBR) and genetic algorithms (GAÌs). CBR provides a precedent-based framework in which prior design cases are retrieved and adapted in order to meet the requirements of a new design problem. GAÌs provide a general-purpose mechanism for randomly combining and modifying potential solutions to a new problem repeatedly until an adequate solution is found. In our model we use a GA to perform the case-adaptation subtask of CBR. In this manner, a gradual improvement in the overall quality of the proposed designs is obtained as more and more adaptations of the design cases originally retrieved from memory are evolved. We describe how these ideas can be used to perform layout design of residences such that the final designs satisfy the requirements imposed by feng shui, the Chinese art of placement.
series CAADRIA
email
last changed 2022/06/07 07:55

_id ca7b
authors Howes, Jaki
year 1999
title IT or not IT? An Examination of IT Use in an Experimental Multi-disciplinary Teamwork Situation
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 370-373
doi https://doi.org/10.52842/conf.ecaade.1999.370
summary Leeds Metropolitan University is well placed to carry out research into multi-disciplinary team-working, as all the design and construction disciplines are housed in one faculty. Staff have set up an experimental project, TIME IT (Team-working in Multi-disciplinary Environments using IT) which examines ways of working in the design/construction process and how IT is used when there is no commercial pressure. Four groups of four students, one graduate diploma architect, and one final year student from each of Civil Engineering, Construction Management and Quantity Surveying have been working on feasibility studies for projects that are based on completed schemes or have been devised by collaborators in the Construction Industry. Students have been asked to produce a PowerPoint presentation, in up to five working days, of a design scheme, with costs, structural analysis and construction programme. The students are not assessed on the quality of the product, but on their own ability to monitor the process and use of IT. Despite this, aggressive competition evolved between the teams to produce the 'best' design. Five projects were run in the 1998/99 session. A dedicated IT suite has been provided; each group of students had exclusive use of a machine. They were not told how to approach the projects nor when to use the available technology, but were asked to keep the use of paper to a minimum and to keep all their work on the server, so that it could be monitored externally. Not so. They plotted the AO drawings of an existing building that had been provided on the server. They like paper - they can scribble on it, fold it, tear it and throw it at one another.
keywords IT, Multi-disciplinary, Teamwork
series eCAADe
email
last changed 2022/06/07 07:50

_id 130b
authors Huang, Ying-Hsiu
year 1999
title A Cognitive Study of Shapes and Functions in Design Sketches: Simulating an Industrial Design Case by Neural Networks
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 275-284
doi https://doi.org/10.52842/conf.caadria.1999.275
summary The present research focuses on transforming shapes that had been drawn by designers on the sketches and on evaluating the shapes from design requirements. In this research, neural networks simulate the result from collecting shapes that designers transformed from original shapes and evaluations from all ones. There are four steps in this research: First, a cognitive experiment. I collected real shapes that designers drew and evaluations from the experiment in order to training the neural networks. Second, a transforming neural network is simulating the behavior in which designers transformed one shape into another without evaluating the design requirements. Third, a evaluating neural network that trained by the evaluations that collected from the experiment is simulating how designers criticized the shapes in terms of design requirements. Fourth, modifying program is trying to modify the evaluations that had been criticized by designers from all shapes and generating a new shape from modified evaluations. This research proposed a synthetic system that simulating the behavior during design sketching, therefore, computers could also generate some ideas like human designer.
series CAADRIA
last changed 2022/06/07 07:50

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 1121
authors Kalay, Yehuda E.
year 1999
title The Future of CAAD: From Computer-aided Design to Computer-aided Collaboration
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 14-30
summary The primary uses of computers in the construction industry have been shifting, over the past four decades, from the evaluation of proposed design solutions, to their graphical (and other) representation, and more recently to facilitating collaboration among the various professionals who are involved in the design process. The paper argues that what may appear to be shifts in emphasis actually represents convergence on a single, original goal: the use of computers to help designers assess the quality, desirability, and the implications of their creations. The paper shows how the formerly independent components can be joined into an integrated collaborative design environment, where they build upon and strengthen each other. Moreover, the paper argues that this convergence represents the future of CAAD research and development, providing the appropriate answer to the upcoming needs of the construction industry, whose products have become too complex and must abide by too many requirements for any one professional to handle all by himself. The paper argues that further improvements in the overall quality of the products, and the process of their design, will only accrue when the heretofore separate solutions are considered together, as integral parts of an overall solution. The paper describes the efforts that have been made by the CAD Research Group in Berkeley over the past six years in developing an integrated collaborative design environment that can facilitate multidisciplinary, a- synchronous design of buildings. The environment includes several semantically-rich, shared product representations, a network of distributed evaluators, and graphically enhanced collaboration and negotiation tools.
keywords Collaborative Design, Distributed Design Environment, Product Modeling, Performance Modeling, Process Modeling, Negotiation, Integration
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 06e3
authors Manes, Sergio
year 1999
title La influencia de los software infográficos en la formación del arquitecto. Ideas contenidas en los software de representación. Estrategia pedagógica (The Influence of Graphic Software in the Education of the Architect. Ideas Contained in the Representation Software. Pedagogic Strategy)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 307-309
summary These report shows the result obtained by the application of an pedagogic strategy in order to teach how to use software of rendering like an instrument of design. Through the acknowledgement of certain kind of ideas contained in the instruments of representation, we made the parallel between these instruments and the software, in order to found other ideas contained on this.through the application of these ideas like the essence of certain kinds of exercises of design, the student is introduced in the world of the software of rendering, not only like an instrument of representation, but an instrument of design.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 6b7d
authors Mishima, Yoshitaka and Szalapaj, Peter
year 1999
title ADMIRE: an Architectural Design Multimedia Interaction Resource for Education
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 201-209
doi https://doi.org/10.52842/conf.ecaade.1999.201
summary This paper describes the development of a multimedia system called ADMIRE (an Architectural Design Multimedia Interaction Resource for Education), which enables undergraduate students to understand how to analyse existing buildings dynamically, as well as to develop their own initial architectural design theories. The system contains architectural information in the form of fully rendered models, conceptual illustrations created with a range of CAD software, and multimedia presentations showing various design theoretic analyses. Buildings are described with CAD generated images, and architects with profiles and theories. In addition to rendered designs, there are also conceptual models of each building in the system. Conceptual models are simplified forms of original designs in order to support an analytical understanding of buildings according to various analyses, such as structure, light, circulation, unit to whole, geometry, etc. Each conceptual model constitutes a different analysis of each building. The ADMIRE system links each piece of information to another, so that students can explore architecture and learn about it in a dynamic way. This system demonstrates a new way of learning about architectural analysis through dynamic multimedia computer interaction.
keywords Dynamic Multimedia System, Analytical Models, Interactive Pedagogical Resource
series eCAADe
email
last changed 2022/06/07 07:58

_id 2dc4
authors Ng, E., Lam, K.P., Wu, W., Nagakura T.
year 1999
title The application of computer simulation techniques to the design and preservation of a national monument
source IBPSA, Kyoto, vol 2, 555-562
summary The paper outlines a two-year research program where Radiance was used in the conversion of Empress Place, a national monument in Singapore, into an Asian Civilisation Museum. The paper describes how the research team fine-tune the modeling and software settings to cope with some of the contextual issues of design. Inaddition, the paper discusses how Radiance could be used to aid the design of the building. One of the more difficult tasks the researchers faced was to model and validate some of the daylighting control devices that are part of the existing features of the building. And to design new control devices that are architecturally consistent with the building. Working with the design team, options and strategies are studied. At the end, contrary to the original beliefs of the architect, and much to the liking of the curator, it has been demonstrated that, carefully designed, daylighting could be introduced into the gallery and that it will enhance the quality of the interior spaces. The building is currently under construction.
series other
last changed 2003/04/23 15:50

_id 138e
authors Park, S.-H. and Gero, J.S.
year 1999
title Qualitative representation and reasoning about shapes
source Gero, J.S. and Tversky, B. (Eds.), Visual and Spatial Reasoning in Design , Key Centre of Design Computing and Cognition, University of Sydney, Sydney, Australia, pp. 55-68
summary In this paper we present an approach to the qualitative representation of shape and its use. We use a qualitative coding scheme founded on landmarks in the shape. The scheme encodes a qualitative representation of angles, relative side lengths and curvatures at landmarks. We then show how such a representation can be used as a basis for reasoning about shapes using extracted shape features. We conclude with a preliminary analysis of 12 sketches of the architect Louis Kahn and show how they may be categorised based on these shape features.
keywords Qualitative Representation, Shape Reasoning
series other
email
last changed 2003/04/06 09:19

_id 2c63
authors QaQish, Ra'Ed and Tarazi, Khaled
year 1999
title Formulating a Computer-Aided Architectural Design (CAAD) Program Model in Distance Education (DE) at Open Universities (OU)
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 189-204
summary This paper reports on a project that aims to formulate a CAAD program model in Distance Education (Learning/Teaching) framework, to be applied and implemented in future settings at Open Universities worldwide. The methodology used to establish the CAAD program model consisted of a worldwide literature review on the subject of Distance Education and Open Universities. It also involved an assessment of the methods and means used in the delivery of materials to students enrolled at Open Universities, together with an analysis of the current program of study and subject related courses. The methods of this investigation consisted of a comparative analysis between the existing models of teaching process at Open Universities and how it relates to CAAD in architecture schools. The study endeavored to examine several issues that were found to be key factors in any Open University system, namely: the methods of study, program of study, student type/body, academic/degree requirements, and residency/academic calendars. While attempting to establish a conceptual CAAD program model, this study investigated several questions concerning the efficiency of CAAD teaching in Distance Education. One of the study objectives was to determine which factors were mostly needed to effectively integrate CAAD in DE as a new program in Open Universities. In addition, how would these factors affect the design of CAAD courses in OU systems as a new DE program area? And what structural elements would be most affected by these factors? Another objective of this study was to determine to what extent the new CAAD program model in tandem with staff, learning environment, and administered materials would be effective in generating supplementary strategies in the virtual design studio. A third objective was to evaluate the personal computer station as an alternative design studio space in future settings of schools of architecture. Consequently, the principle objective of this study was to develop and establish a CAAD program model to be adopted by Open Universities as a new subject area in DE. Mainly, the study attempted to locate the areas where CAAD teaching excels in the context of virtual design studio of OU system.
series AVOCAAD
last changed 2005/09/09 10:48

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 7cb1
authors Stuurstraat, N. and Tolman, F.
year 1999
title A product modeling approach to building knowledge integration
source Automation in Construction 8 (3) (1999) pp. 269-275
summary Knowledge informatics is still playing only a minor role in the design process of buildings and civil engineering efforts, particularly in the inception stage. The primary reason that most knowledge tools are not well integrated into the process is that most tend to be based on stand alone expert system technology. Improving the re-use of existing knowledge is required to increase industry performance. A solution could be a new generation of integrated knowledge systems. One problem that must be addressed is how to cope with the conflicting requirements of each particular subsystem when each is optimized for its own knowledge domain. No optimum solution exists that is able to simultaneously optimize each subsystem for a total solution. This paper discusses an approach to building knowledge integration that attempts to address these shortcomings through the use of combined product model and meta-knowledge approach.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 53df
authors Uddin, M.S.
year 1999
title Hybrid Drawing Techniques by Contemporary Architects and Designers
source John Wiley, New York,
summary The complete hybrid drawing sourcebook Hybrid drawings offer limitless possibilities for the fusion and superimposition of ideas, media, and techniques-powerful creative tools for effective and innovative architectural graphic presentation. This unique guide offers a dynamic introduction to these drawings and how they are created, with a stunning color portfolio of presentation-quality examples that give full visual expression to the power and potential of hybrid drawing techniques. Featuring the work of dozens of internationally recognized architects and firms, including Takefumi Aida, Helmut Jahn of Murphy/Jahn Architects, Morphosis, Eric Owen Moss, NBBJ Sports & Entertainment, Smith-Miller & Hawkinson, and Bernard Tschumi Architects, the book's visual examples are accompanied by descriptive and analytical commentary that gives valuable practical insight into the background of each project, along with essential information on the design concept and the drawing process. Combining all of the best features of an idea resource and a how-to guide, Hybrid Drawing Techniques by Contemporary Architects and Designers is an important creative tool for students and professionals in architecture, design, illustration, and related areas
series other
last changed 2003/04/23 15:14

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2c1d
authors Castañé, D., Tessier, C., Álvarez, J. and Deho, C.
year 1999
title Patterns for Volumetric Recognition - Guidelines for the Creation of 3D-Models
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 171-175
summary This piece proposes new strategies and pedagogic methodologies applied to the recognition and study of the subjacent measurements of the architectural projects to be created. This proposal is the product of pedagogic experience, which stems from this instructional team of the department of tri-dimensional models of electronic models. This program constitutes an elective track for the architectural major at the college of architecture, design, and urbanism of the University of Buenos Aires and housed at the CAO center. One of the requirements that the students must complete, after doing research and analytical experimentation through the knowledge that they acquired through this course, is to practice the attained skills through exercises proposed by the department in this case, the student would be required to virtually rebuild a paradigmatic architectonic piece of several sample architects. Usually at this point, students experience some difficulties when they analyze the existing documents on the plants, views, picture, details, texts, etc., That they have obtained from magazines, books, and other sources. Afterwards, when they digitally begin to generate basic measurements of the architectural work to be modeled, they realize that there are great limitations in the comprehension of the tri-dimensional understanding of the work. This issue has brought us to investigate and develop proposals of volumetric understanding of patterns through examples of work already analyzed and digitalized tri-dimensionally in the department. Through a careful study of the existent documentation for that particular work, it is evaluated which would be the paths and basis to adopt through utilizing alternative technologies to arrive at a clear reconstruction of the projected architectural work, the study gets completed by implementing the proposal at the internet site http://www.datarq.fadu.uba.ar/catedra/dorcas
series SIGRADI
email
last changed 2016/03/10 09:48

_id e719
authors Achten, Henri and Turksma, Arthur
year 1999
title Virtual Reality in Early Design: the Design Studio Experiences
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 327-335
summary The Design Systems group of the Eindhoven University of Technology started a new kind of design studio teaching. With the use of high-end equipment, students use Virtual Reality from the very start of the design process. Virtual Reality technology up to now was primarily used for giving presentations. We use the same technology in the design process itself by means of reducing the time span in which one gets results in Virtual Reality. The method is based on a very brief cycle of modelling in AutoCAD, assigning materials in 3DStudio Viz, and then making a walkthrough in Virtual Reality in a standard landscape. Due to this cycle, which takes about 15 seconds, the student gets immediate feedback on design decisions which facilitates evaluation of the design in three dimensions much faster than usual. Usually the learning curve of this kind of software is quite steep, but with the use of templates the number of required steps to achieve results is reduced significantly. In this way, the potential of Virtual Reality is not only explored in research projects, but also in education. This paper discusses the general set-up of the design studio and shows how, via short workshops, students acquire knowledge of the cycle in a short time. The paper focuses on the added value of using Virtual Reality technology in this manner: improved spatial reasoning, translation from two-dimensional to three-dimensional representations, and VR feedback on design decisions. It discusses the needs for new design representations in this design environment, and shows how fast feedback in Virtual Reality can improve the spatial design at an early stage of the design process.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 6d88
authors Achten, Henri H. and Van Leeuwen, Jos P.
year 1999
title Feature-Based High Level Design Tools - A Classification
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 275-290
summary The VR-DIS project aims to provide design support in the early design stage using a Virtual Reality environment. The initial brief of the design system is based on an analysis of a design case. The paper describes the process of analysis and extraction of design knowledge and design concepts in terms of Features. It is demonstrated how the analysis has lead to a classification of design concepts. This classification forms one of the main specifications for the VR-based design aid system that is being developed in the VR-DIS programme. The paper concludes by discussing the particular approach used in the case analysis and discusses future work in the VR-DIS research programme.
keywords Features, Feature-Based modelling, Architectural Design, Design Process, Design Support
series CAAD Futures
email
last changed 2006/11/07 07:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_825099 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002