CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 617

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecb2
authors Kalay, Yehuda E.
year 1999
title The Future of CAAD: From Computer-Aided Design to Computer-Aided Collaboration
source Llavaneras S., Gustavo J. and Negrón P., Enssa (eds.), 1ra Conferencia Venezolana sobre Aplicación de Computadores en Arquitectura, Caracas (Venezuela) 1-3 december 1999, pp. 19-28
summary The primary uses of computers in the construction industry have been shifting, over the past four decades, from the evaluation of proposed design solutions, to their graphical (and other) representation, and more recently to facilitating collaboration among the various professionals who are involved in the design process. This paper argues that what may appear to be shifts in emphasis actually represents convergence on a single, original goal: the use of computers to help designers (and others who are involved in the design decision making process) to assess the quality, desirability, and the implications of their creations. Such assistance requires representation, communication, and analysis. The paper goes on to show how these individual parts can be joined into an integrated collaborative design environment, where they build upon and strengthen each other. Moreover, the paper argues that this convergence represents the future of CAAD research and development.
series other
email
last changed 2002/12/23 14:11

_id 1121
authors Kalay, Yehuda E.
year 1999
title The Future of CAAD: From Computer-aided Design to Computer-aided Collaboration
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 14-30
summary The primary uses of computers in the construction industry have been shifting, over the past four decades, from the evaluation of proposed design solutions, to their graphical (and other) representation, and more recently to facilitating collaboration among the various professionals who are involved in the design process. The paper argues that what may appear to be shifts in emphasis actually represents convergence on a single, original goal: the use of computers to help designers assess the quality, desirability, and the implications of their creations. The paper shows how the formerly independent components can be joined into an integrated collaborative design environment, where they build upon and strengthen each other. Moreover, the paper argues that this convergence represents the future of CAAD research and development, providing the appropriate answer to the upcoming needs of the construction industry, whose products have become too complex and must abide by too many requirements for any one professional to handle all by himself. The paper argues that further improvements in the overall quality of the products, and the process of their design, will only accrue when the heretofore separate solutions are considered together, as integral parts of an overall solution. The paper describes the efforts that have been made by the CAD Research Group in Berkeley over the past six years in developing an integrated collaborative design environment that can facilitate multidisciplinary, a- synchronous design of buildings. The environment includes several semantically-rich, shared product representations, a network of distributed evaluators, and graphically enhanced collaboration and negotiation tools.
keywords Collaborative Design, Distributed Design Environment, Product Modeling, Performance Modeling, Process Modeling, Negotiation, Integration
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 4fa1
authors Lee, E., Ida, Y., Woo, S. and Sasada, T.
year 1999
title Environmental Design Using Fractals in Computer Graphics
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 533-538
doi https://doi.org/10.52842/conf.ecaade.1999.533
summary Computer graphics have developed efficient techniques for visualisation of the real world. Many of the algorithms have a physical basis, such as computational models for the light and the shadow, models of real objects (buildings, mountains, roads and so on) and the simulation of natural phenomenon. Now computer graphics techniques provide the virtual world with a perception of three dimensions. The concept of the virtual world and its technology have been expanding and intensifying in recent years. Almost everything in the real world has been simulated in virtual world. When it comes to a terrain model, what we need is labour and time. But now it is possible to simulate terrain like the real world using fractals in computer graphics with a very small program and small data set. This study aims to show how to build a real world impression in the virtual world. In this paper the authors suggest a landscape design method and show the results of its application.
keywords Fractals, Polygon-Reduction, Computer Graphics, Virtual World, Collaboration
series eCAADe
last changed 2022/06/07 07:51

_id 9eb6
authors Peng C. and Blundell Jones, P.
year 1999
title Hypermedia Authoring and Contextual Modeling in Architecture and Urban Design: Collaborative Reconstructing Historical Sheffield
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 114-124
doi https://doi.org/10.52842/conf.acadia.1999.114
summary Studies of historical architecture and urban contexts in preparation for contemporary design interventions are inherently rich in information, demanding versatile and efficient methods of documentation and retrieval. We report on a developing program to establish a hypermedia authoring approach to collaborative contextual modeling in architecture and urban design. The paper begins with a description of a large-scale urban history study project in which 95 students jointly built a physical model of the city center of Sheffield as it stood in 1900, at a scale of 1:500. Continuing work on the Sheffield urban study project, it appears to us desirable to adopt a digital approach to archiving the material and in making it both indexible and accessible via multiple routes. In our review of digital models of cities, some interesting yet unexplored issues were identified. Given the issues and tasks elicited, we investigated hypermedia authoring in HTML and VRML as a designer-centered modeling methodology. Conceptual clarity of the methodology was considered, intending that an individual or members of design groups with reasonable computing skills could learn to operate it quickly. The methodology shows that it is practicable to build a digital contextual databank by a group of architecture/urban designers rather than by specialized modeling teams. Contextual modeling with or without computers can be a research activity on its own. However, we intend to investigate further how hypermedia-based contextual models can be interrelated to design development and communication. We discuss three aspects that can be explored in a design education setting.
series ACADIA
email
last changed 2022/06/07 07:59

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 36dc
authors Reffat, Rabee M. and Gero, John S.
year 1999
title Situatedness: A New Dimension for Learning Systems in Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 252-261
doi https://doi.org/10.52842/conf.ecaade.1999.252
summary In this paper we adopt the approach that designing is a series of situated acts, ie designing cannot be pre-planned to completion. This is based on ideas from situated cognition theory that claims that what people perceive, how they conceive and what they do develop together and are adapted to the environment. For a system to be useful for human designers it must have the ability to associate what is learned to its environment. In order for a system to do that such a system must be able to acquire knowledge of the environment that a design constructs. Therefore, acknowledging the notion of situatedness is of importance to provide a system with such capability and add on a new dimension to existing learning systems in design. We will call such a learning system within the design domain a Situated Learning Design System (SLDS). A SLDS should be able to create its own situational categories from its perceptual experiences and modify them if encountered again to link the learned knowledge to its corresponding situation. We have chosen architectural shapes as the vehicle to demonstrate our ideas and used multiple representations to build a platform for a SLDS to learn from. In this paper the notion of situatedness and its role in both designing and learning is discussed. The overall architecture of a SLDS is introduced and how the potential outcome of such a system will support human designers while designing is discussed.
keywords Designing, Situated Knowledge, Multiple Representations, Situated Learning
series eCAADe
email
last changed 2022/06/07 08:00

_id e719
authors Achten, Henri and Turksma, Arthur
year 1999
title Virtual Reality in Early Design: the Design Studio Experiences
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 327-335
summary The Design Systems group of the Eindhoven University of Technology started a new kind of design studio teaching. With the use of high-end equipment, students use Virtual Reality from the very start of the design process. Virtual Reality technology up to now was primarily used for giving presentations. We use the same technology in the design process itself by means of reducing the time span in which one gets results in Virtual Reality. The method is based on a very brief cycle of modelling in AutoCAD, assigning materials in 3DStudio Viz, and then making a walkthrough in Virtual Reality in a standard landscape. Due to this cycle, which takes about 15 seconds, the student gets immediate feedback on design decisions which facilitates evaluation of the design in three dimensions much faster than usual. Usually the learning curve of this kind of software is quite steep, but with the use of templates the number of required steps to achieve results is reduced significantly. In this way, the potential of Virtual Reality is not only explored in research projects, but also in education. This paper discusses the general set-up of the design studio and shows how, via short workshops, students acquire knowledge of the cycle in a short time. The paper focuses on the added value of using Virtual Reality technology in this manner: improved spatial reasoning, translation from two-dimensional to three-dimensional representations, and VR feedback on design decisions. It discusses the needs for new design representations in this design environment, and shows how fast feedback in Virtual Reality can improve the spatial design at an early stage of the design process.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 6d88
authors Achten, Henri H. and Van Leeuwen, Jos P.
year 1999
title Feature-Based High Level Design Tools - A Classification
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 275-290
summary The VR-DIS project aims to provide design support in the early design stage using a Virtual Reality environment. The initial brief of the design system is based on an analysis of a design case. The paper describes the process of analysis and extraction of design knowledge and design concepts in terms of Features. It is demonstrated how the analysis has lead to a classification of design concepts. This classification forms one of the main specifications for the VR-based design aid system that is being developed in the VR-DIS programme. The paper concludes by discussing the particular approach used in the case analysis and discusses future work in the VR-DIS research programme.
keywords Features, Feature-Based modelling, Architectural Design, Design Process, Design Support
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ae61
authors Af Klercker, Jonas
year 1999
title CAAD - Integrated with the First Steps into Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 266-272
doi https://doi.org/10.52842/conf.ecaade.1999.266
summary How and when should CAAD be introduced in the curriculum of the School of Architecture? This paper begins with some arguments for starting CAAD education at the very beginning. At the School of Architecture in Lund teachers in the first year courses have tried to integrate CAAD with the introduction to architectural concepts and techniques. Traditionally the first year is divided by several subjects running courses separatly without any contact for coordination. From the academic year 96/97 the teachers of Aplied aestetics, Building Science, Architectural design and CAAD have decided to colaborate as much as possible to make the role of our different fields as clear as possible to the students. Therefore integrating CAAD was a natural step in the academic year 98/99. The computer techniques were taught one step in advance so that the students can practise their understanding of the programs in their tasks in the other subjects. The results were surprisingly good! The students have quickly learned to mix the manual and computer techniques to make expressive and interesting visual presentations of their ideas. Some students with antipaty to computers have overcome this handicap. Some interesting observations are discussed.
keywords Curriculum, First Year Studies, Integration, CAAD, Modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id alqawasmi
id alqawasmi
authors Al-Qawasmi, J., Clayton, M.J., Tassinary, L.G. and Johnson, R..
year 1999
title Observations on Collaborative Design and Multimedia Usage in Virtual Design Studio
source J. Woosely and T. Adair (eds.), Learning virtually: Proceedings of the 6th annual distance education conference, San Antonio, Texas, pp. 1-9
summary The virtual design studio (VDS) points to a new way of practicing and teaching architectural design. As a new phenomenon, little research has been done to evaluate design collaboration and multimedia usage in a distributed workplace like the virtual design studio. Our research provides empirical data on how students actually use multiple media during architectural collaborative design.
series other
email
last changed 2003/12/06 09:55

_id 295d
authors Amor, R.W., Hosking, J.G. and Mugridge, W.B.
year 1999
title ICAtect-II: a framework for the integration of building design tools
source Automation in Construction 8 (3) (1999) pp. 277-289
summary The development of a system capable of integrating a range of building design tools poses many challenges. Our framework for integrating design tools provides a structured approach, allowing individual parts to be developed independently. In this paper, we describe the overall framework and suggest a method for modeling and implementing each portion of the framework. Furthermore, we illustrate how such a system can integrate several design tools and be realized as a functional design system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id f317
authors Arvin, Scott A. and House, Donald H.
year 1999
title Modeling Architectural Design Objectives in Physically Based Space Planning
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 212-225
doi https://doi.org/10.52842/conf.acadia.1999.212
summary Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, which allows a designer to easily make decisions whose consequences immediately propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design itself. In our approach, the designer creates a space plan by specifying and modifying graphic design objectives rather than by directly manipulating primitive geometry. The plan adapts to the changing state of objectives by applying the physics of motion to its elements. For design objectives to have an effect on a physically based space plan, they need to be able to apply appropriate forces to space plan elements. Space planning can be separated into two problems, determining topological properties and determining geometric properties. Design objectives can then be categorized as topological or geometric objectives. Topological objectives influence the location of individual spaces, affecting how one space relates to another. Geometric objectives influence the size and shape of space boundaries, affecting the dimensions of individual walls. This paper focuses on how to model a variety of design objectives for use in a physically based space planning system. We describe how topological objectives, such as adjacency and orientation, can be modeled to apply forces to space locations, and how geometric objectives, such as area, proportion, and alignment, can be modeled to apply forces to boundary edges.
series ACADIA
email
last changed 2022/06/07 07:54

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 9e00
authors Bridges, Alan
year 1999
title Progress? What Progress?
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 321-326
doi https://doi.org/10.52842/conf.ecaade.1999.321
summary This paper briefly reviews some of the history of computer graphics standardisation and then presents two specific case studies: one comparing HTML with SGML and Troff and the other comparing VRML with the Tektronix® Interactive Graphics Language implementation of the ACM Core Standard. In each case, it will be shown how the essential intellectual work carried out twenty years ago still lies at the foundations of the newer applications.
keywords SGML, HTML, VRML
series eCAADe
email
last changed 2022/06/07 07:54

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
doi https://doi.org/10.52842/conf.ecaade.1999
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id f11d
authors Brown, K. and Petersen, D.
year 1999
title Ready-to-Run Java 3D
source Wiley Computer Publishing
summary Written for the intermediate Java programmer and Web site designer, Ready-to-Run Java 3D provides sample Java applets and code using Sun's new Java 3D API. This book provides a worthy jump-start for Java 3D that goes well beyond the documentation provided by Sun. Coverage includes downloading the Java 2 plug-in (needed by Java 3D) and basic Java 3D classes for storing shapes, matrices, and scenes. A listing of all Java 3D classes shows off its considerable richness. Generally, this book tries to cover basic 3D concepts and how they are implemented in Java 3D. (It assumes a certain knowledge of math, particularly with matrices, which are a staple of 3D graphics). Well-commented source code is printed throughout (though there is little additional commentary). An applet for orbiting planets provides an entertaining demonstration of transforming objects onscreen. You'll learn to add processing for fog effects and texture mapping and get material on 3D sound effects and several public domain tools for working with 3D artwork (including converting VRML [Virtual Reality Markup Language] files for use with Java 3D). In all, this book largely succeeds at being accessible for HTML designers while being useful to Java programmers. With Java 3D, Sun is betting that 3D graphics shouldn't require a degree in computer science. This book reflects that philosophy, though advanced Java developers will probably want more detail on this exciting new graphics package. --Richard Dragan Topics covered: Individual applets for morphing, translation, rotation, and scaling; support for light and transparency; adding motion and interaction to 3D objects (with Java 3D classes for behaviors and interpolators); and Java 3D classes used for event handling.
series other
last changed 2003/04/23 15:14

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
doi https://doi.org/10.52842/conf.ecaade.1999.374
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id ga9913
id ga9913
authors Ceccato, Cristiano and Liauw, Laurence
year 1999
title Parametric Urbanism: Explorations in Generative Urban Design
source International Conference on Generative Art
summary This paper is the result of several years of research by the Authors into the new field of generative design, as applied to urbanism. Its purpose is to formulate a concept of parametric urbanism and data-driven urban design, and how it departs from existing concepts of urban analysis and resulting design methods. This paper first gives a definition and description of the notion of generative urban design, and its relevance to current the practice of architecture and global political, sociological and economic developments. The difference between dogmatic forms of urban design and new parametric research methods is explained, and the Authors argue the fundamental relevance of using examples of post-colonial large-scale projects. In support of this, the Authors explore the widening field of research into parametric and data-driven architecture and urban design and the history of rule-based and evolutionary design methodologies. The paper illustrates examples of successful research in the field of parametric and rule-based urban design, by the Authors as well as colleagues within the field. It surveys the Authors’ work done at the Architectural Association School of Architecture, at the Hong Kong Polytechnic University School of Design, as well as in practice and research-oriented consultancy. The projects illustrated support the thesis of parametric urbanism by showing its power and versatility when applied to very large-scale projects, in particular within the People’s Republic of China.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a9b0
authors Cha, Myung Yeol and Gero, John
year 1999
title Style Learning: Inductive Generalisation of Architectural Shape Patterns
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 629-644
doi https://doi.org/10.52842/conf.ecaade.1999.629
summary Art historians and critics have defined the style as common features appeared in a class of objects. Abstract common features from a set of objects have been used as a bench mark for date and location of original works. Common features in shapes are identified by relationships as well as physical properties from shape descriptions. This paper will focus on how the computer recognises common shape properties from a class of shape objects to learn style. Shape representation using schema theory has been explored and possible inductive generalisation from shape descriptions has been investigated.
keywords Style, Inductive Generalisation, Knowledge Representation, Shape
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_539286 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002