CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 620

_id ga9922
id ga9922
authors Annunziato, M. and Pierucci, P.
year 1999
title The Art of Emergence
source International Conference on Generative Art
summary Since several years, the term emergence is mentioned in the paradigm of chaos and complexity. Following this approach, complex system constituted by multitude of individual develop global behavioral properties on the base of local chaotic interactions (self-organization). These theories, developed in scientific and philosophical milieus are rapidly spreading as a "way of thinking" in the several fields of cognitive activities. According to this "way of thinking" it is possible revise some fundamental themes as the economic systems, the cultural systems, the scientific paths, the communication nets under a new approach where nothing is pre-determined, but the global evolution is determined by specific mechanisms of interaction and fundamental events (bifurcation). With a jump in scale of the life, also other basic concepts related to the individuals as intelligence, consciousness, psyche can be revised as self-organizing phenomena. Such a conceptual fertility has been the base for the revision of the artistic activities as flexible instruments for the investigation of imaginary worlds, metaphor of related real worlds. In this sense we claim to the artist a role of "researcher". Through the free exploration of new concepts, he can evoke qualities, configurations and hypothesis which have an esthetical and expressive value and in the most significant cases, they can induce nucleation of cultural and scientific bifurcation. Our vision of the art-science relation is of cooperative type instead of the conflict of the past decades. In this paper we describe some of the most significant realized artworks in order to make explicit the concepts and basic themes. One of the fundamental topics is the way to generate and think to the artwork. Our characterization is to see the artwork not as a static finished product, but as an instance or a dynamic sequence of instances of a creative process which continuously evolves. In this sense, the attention is focused on the "generative idea" which constitutes the envelop of the artworks generable by the process. In this approach the role of technology (computers, synthesizers) is fundamental to create the dimension of the generative environment. Another characterizing aspect of our artworks is derived by the previous approach and specifically related to the interactive installations. The classical relation between artist, artwork and observers is viewed as an unidirectional flux of messages from the artist to the observer through the artwork. In our approach artist, artwork and observer are autonomous entities provided with own personality which jointly intervene to determine the creative paths. The artist which generate the environment in not longer the "owner" of the artwork; simply he dialectically bring the generative environment (provided by a certain degree of autonomy) towards cultural and creative "void" spaces (not still discovered). The observers start from these platforms to generate other creative paths, sometimes absolutely unexpected , developing their new dialectical relations with the artwork itself. The results derived by these positions characterize the expressive elements of the artworks (images, sequences and sounds) as the outcomes of emergent behavior or dynamics both in the sense of esthetical shapes emergent from fertile generative environments, either in terms of emergent relations between artist, artwork and observer, either in terms of concepts which emerge by the metaphor of artificial worlds to produce imaginary hypothesis for the real worlds.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9916
id ga9916
authors Elzenga, R. Neal and Pontecorvo, Michael S.
year 1999
title Arties: Meta-Design as Evolving Colonies of Artistic Agents
source International Conference on Generative Art
summary Meta-design, the act of designing a system or species of design instead of a design instance, is an important concept in modern design practice and in the generative design paradigm. For meta-design to be a useful tool, the designer must have more formal support for both design species definition/expression and the abstract attributes which the designer is attempting to embody within a design. Arties is an exploration of one possible avenue for supporting meta-design. Arties is an artistic system emphasizing the co-evolution of colonies of Artificial Life design or artistic agents (called arties) and the environment they inhabit. Generative design systems have concentrated on biological genetics metaphors where a population of design instances are evolved directly from a set of ‘parent’ designs in a succession of generations. In Arties, the a-life agent which is evolved, produces the design instance as a byproduct of interacting with its environment. Arties utilize an attraction potential curve as their primary dynamic. They sense the relative attraction of entities in their environment, using multiple sensory channels. Arties then associate an attractiveness score to each entity. This attractiveness score is combined with a 'taste' function built into the artie that is sensitized to that observation channel, entity, and distance by a transfer function. Arties use this attraction to guide decisions and behaviors. A community of arties, with independent evolving attraction criteria can pass collective judgement on each point in an art space. As the Artie moves within this space it modifies the environment in reaction to what it senses. Arties support for Meta-design is in (A) the process of evolving arties, breeding their attraction potential curve parameters using a genetic algorithm and (B) their use of sensory channels to support abstract attributes geometries. Adjustment of these parameters tunes the attraction of the artie along various sensing channels. The multi-agent co-evolution of Arties is one approach to creating a system for supporting meta-design. Arties is part of an on-going exploration of how to support meta-design in computer augmented design systems. Our future work with Arties-like systems will be concerned with applications in areas such as modeling adaptive directives in Architecture, Object Structure Design, spatio-temporal behaviors design (for games and simulations), virtual ambient spaces, and representation and computation of abstract design attributes.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6810
authors Makkonen, Petri
year 1999
title On multi body systems simulation in product design
source KTH Stockholm
summary The aim of this thesis is to provide a basis for efficient modelling and software use in simulation driven product development. The capabilities of modern commercial computer software for design are analysed experimentally and qualitatively. An integrated simulation model for design of mechanical systems, based on four different "simulation views" is proposed: An integrated CAE (Computer Aided Engineering) model using Solid Geometry (CAD), Finite Element Modelling (FEM), Multi Body Systems Modelling (MBS) and Dynamic System Simulation utilising Block System Modelling tools is presented. A theoretical design process model for simulation driven design based on the theory of product chromosome is introduced. This thesis comprises a summary and six papers. Paper A presents the general framework and a distributed model for simulation based on CAD, FEM, MBS and Block Systems modelling. Paper B outlines a framework to integrate all these models into MBS simulation for performance prediction and optimisation of mechanical systems, using a modular approach. This methodology has been applied to design of industrial robots of parallel robot type. During the development process, from concept design to detail design, models have been refined from kinematic to dynamic and to elastodynamic models, finally including joint backlash. A method for analysing the kinematic Jacobian by using MBS simulation is presented. Motor torque requirements are studied by varying major robot geometry parameters, in dimensionless form for generality. The robot TCP (Tool Center Point) path in time space, predicted from elastodynamic model simulations, has been transformed to the frequency space by Fourier analysis. By comparison of this result with linear (modal) eigen frequency analysis from the elastodynamic MBS model, internal model validation is obtained. Paper C presents a study of joint backlash. An impact model for joint clearance, utilised in paper B, has been developed and compared to a simplified spring-damper model. The impact model was found to predict contact loss over a wider range of rotational speed than the spring-damper model. Increased joint bearing stiffness was found to widen the speed region of chaotic behaviour, due to loss of contact, while increased damping will reduce the chaotic range. The impact model was found to have stable under- and overcritical speed ranges, around the loss of contact region. The undercritical limit depends on the gravitational load on the clearance joint. Papers D and E give examples of the distributed simulation model approach proposed in paper A. Paper D presents simulation and optimisation of linear servo drives for a 3-axis gantry robot, using block systems modelling. The specified kinematic behaviour is simulated with multi body modelling, while drive systems and control system are modelled using a block system model for each drive. The block system model has been used for optimisation of the transmission and motor selection. Paper E presents an approach for re-using CAD geometry for multi body modelling of a rock drilling rig boom. Paper F presents synthesis methods for mechanical systems. Joint and part number synthesis is performed using the Grübler and Euler equations. The synthesis is continued by applying the theory of generative grammar, from which the grammatical rules of planar mechanisms have been formulated. An example of topological synthesis of mechanisms utilising this grammar is presented. Finally, dimensional synthesis of the mechanism is carried out by utilising non-linear programming with addition of a penalty function to avoid singularities.
keywords Simulation; Optimisation; Control Systems; Computer Aided Engineering; Multi Body Systems; Finite Element Method; Backslash; Clearance; Industrial Robots; Parallel Robots
series thesis:PhD
last changed 2003/02/12 22:37

_id d8df
authors Naticchia, Berardo
year 1999
title Physical Knowledge in Patterns: Bayesian Network Models for Preliminary Design
doi https://doi.org/10.52842/conf.ecaade.1999.611
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 611-619
summary Computer applications in design have pursued two main development directions: analytical modelling and information technology. The former line has produced a large number of tools for reality simulation (i.e. finite element models), the latter is producing an equally large amount of advances in conceptual design support (i.e. artificial intelligence tools). Nevertheless we can trace rare interactions between computation models related to those different approaches. This lack of integration is the main reason of the difficulty of CAAD application to the preliminary stage of design, where logical and quantitative reasoning are closely related in a process that we often call 'qualitative evaluation'. This paper briefly surveys the current development of qualitative physical models applied in design and propose a general approach for modelling physical behaviour by means of Bayesian network we are employing to develop a tutoring and coaching system for natural ventilation preliminary design of halls, called VENTPad. This tool explores the possibility of modelling the causal mechanism that operate in real systems in order to allow a number of integrated logical and quantitative inference about the fluid-dynamic behaviour of an hall. This application could be an interesting connection tool between logical and analytical procedures in preliminary design aiding, able to help students or unskilled architects, both to guide them through the analysis process of numerical data (i.e. obtained with sophisticate Computational Fluid Dynamics software) or experimental data (i.e. obtained with laboratory test models) and to suggest improvements to the design.
keywords Qualitative Physical Modelling, Preliminary Design, Bayesian Networks
series eCAADe
email
last changed 2022/06/07 07:59

_id a4e9
authors Petrovic, Igor and Svetel, Igor
year 1999
title From Number Cruncher to Digital Being: The Changing Role of Computer in CAAD
doi https://doi.org/10.52842/conf.ecaade.1999.033
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 33-39
summary The paper reflects on a thirteen-year period of CAAD research and development by a small group of researchers and practitioners. Starting with simple algorithmic drafting programmes, the work transcended to expert systems and distributed artificial intelligence, using computers as tools. The research cycle is about to begin afresh; computers in the next century shall not be detached entities but the extensions of man. The computer shall be the medium that will enable a designer to be what he/she really is. This future has already begun.
keywords History of CAAD, CAAD Design Paradigms, CAADfuture
series eCAADe
email
last changed 2022/06/07 08:00

_id b4d2
authors Caldas, Luisa G. and Norford, Leslie K.
year 1999
title A Genetic Algorithm Tool for Design Optimization
doi https://doi.org/10.52842/conf.acadia.1999.260
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 260-271
summary Much interest has been recently devoted to generative processes in design. Advances in computational tools for design applications, coupled with techniques from the field of artificial intelligence, have lead to new possibilities in the way computers can inform and actively interact with the design process. In this paper we use the concepts of generative and goal-oriented design to propose a computer tool that can help the designer to generate and evaluate certain aspects of a solution towards an optimized behavior of the final configuration. This work focuses mostly on those aspects related to the environmental performance of the building. Genetic Algorithms are applied as a generative and search procedure to look for optimized design solutions in terms of thermal and lighting performance in a building. The Genetic Algorithm (GA) is first used to generate possible design solutions, which are then evaluated in terms of lighting and thermal behavior using a detailed thermal analysis program (DOE2.1E). The results from the simulations are subsequently used to further guide the GA search towards finding low-energy solutions to the problem under study. Solutions can be visualized using an AutoLisp routine. The specific problem addressed in this study is the placing and sizing of windows in an office building. The same method is applicable to a wide range of design problems like the choice of construction materials, design of shading elements, or sizing of lighting and mechanical systems for buildings.
series ACADIA
email
last changed 2022/06/07 07:54

_id ga9924
id ga9924
authors Cardalda, Juan Jesus Romero J.J.
year 1999
title Artificial Music Composer
source International Conference on Generative Art
summary Traditional Musical Computation Systems had to face the differences between the computational techniques and the characteristics of musical creation. Characteristics such as a high degree of subjectivity, a great irrational component, and a learning process based on the use of examples and environmental absorption, have made music difficult to be formalized through algorithmic methods or classical Artificial Intelligence methods such as Expert Systems. We propose the creation of a cybernetic model of a human composer in a primeval stage of human musical evolution, following a paradigm of cognitive complex models creation, based on the use of the human reference, not only in a static point of view but also considering its evolution through time. Therefore, the proposed system simulates musical creation in one of the first stages of musical evolution, whose main characteristics are the percussive and choral aspects. The system is based on Genetic Algorithms, whose genetic population is integrated by several tribes. This model carries out the task of musical composition, led by the user who expresses his/her musical taste assigning a punctuation to each tribe. The GA selects the worse tribes as individuals to be eliminated. In order to select those tribes which are going to be used as parents, a random function is used, having each tribe a probality proportional to its punctuation. The new tribe is produced by crossing the parent tribes in each individual. Afterwards, mutation takes place in the created individuals. The experiments carried out with this system have proved its functionality in the composition of rhythmic patterns. It is intended to enlarge the experiment's scope by communicating the system via Internet. This would enable its use by users of different musical cultures, taking into account that the system is user-friendly, since it requires no musical knowledge.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 3017
authors Carson, J. and Clark, A.
year 1999
title Multicast Shared Virtual Worlds Using VRML 97
source Proceedings of VRML 99 Fourth Symposium on the Virtual Reality Modeling language, The Association for Computing Machinery, Inc. New York, pp. 133-140
summary This paper describes a system for authoring and executing shared virtual worlds within existing VRML97 viewers such as Cosmo Player. As VRML97 does not contain any direct support for the construction of virtual worlds containing multiple users extensions are presented to provide support for shared behaviours, avatars and objects that can be manipulated and carried by participants in the world; these extensions are pre-processed into standard VRML97 and Java. A system infrastructure is described which allows worlds to be authored and executed within the context of the World Wide Web and the MBone. CR Categories and Subject Descriptors: C.2.2 [Computer Communication Networks]: Network Protocols - Applications; C.2.4 [Computer Communication Networks]: Distributed Sys- tems - Distributed Applications; H.5.1 [Information Interfaces and Presentation] Multimedia Information Systems - Artificial, Aug- mented and Virtual Realities; 1.3.2 [Computer Graphics]: Graphics Systems - Distributed/network graphics: 1.3.6 [Computer Graph- ics]: Methodology and Techniques - Interaction Techniques; 1.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism - Virtual Reality.
series other
last changed 2003/04/23 15:50

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c408
authors Hirschberg, U., Schmitt, G., Kurmann, D., Kolarevic, B., Johnson, B. and Donath, D.
year 1999
title The 24 Hour Design Cycle: An Experiment in Design Collaboration over the Internet
doi https://doi.org/10.52842/conf.caadria.1999.181
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 181-190
summary This paper describes a Virtual Design Studio exercise involving three academic institutions University - Hong Kong (China), ETH Zurich (Switzerland), and University of Washington, Seattle (USA) - whereby teachers and students, obviously on three different continents and in three different time zones, roughly eight hours apart, were working on a common design project using computer-aided design systems, video-conferencing and a web-based central database that managed and displayed all works throughout the process. The 24 hour design cycle is a metaphor for a more open and international approach to design, facilitated through computer networks. It implies a new form of collective authorship and distributed credits and thus deals with some of the essential challenges and opportunities the internet poses to creative disciplines.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 70e3
authors Kim, Yong-Seong
year 1999
title Knowledge-Aided Design System for Intelligent Building Design
doi https://doi.org/10.52842/conf.caadria.1999.305
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 305-312
summary In the age of information technology, architectural design problems become increasingly complex, the finding of optimal solutions has become more difficult and obscure. Computer-aided design techniques have been applied to solve these ill-structured design problems; however, most of these applications have been used for graphical automation. Design improvement in quality has not been achieved using traditional computer programs. To handle the critical design decision problems, design systems need to be structured based on theoretical problem solving models. This would enable the design system to handle the problem solving design knowledge as well as the various technological aspects and geometrical representations. A theoretical model, knowledge-aided design, is proposed. Knowledge-aided design is a conceptual and theoretical model based on fundamental principles of design. It provides a problem-solving environment and a procedure for knowledge-based computer-aided architectural design based on cognitive science and artificial intelligence techniques. As a partial implementation of the theoretical model, the development of knowledge-aided design system for intelligent building design is described.
series CAADRIA
last changed 2022/06/07 07:52

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 3d23
authors Sellgren, Ulf
year 1999
title Simulation-driven Design
source KTH Stockholm
summary Efficiency and innovative problem solving are contradictory requirements for product development (PD), and both requirements must be satisfied in companies that strive to remain or to become competitive. Efficiency is strongly related to ”doing things right”, whereas innovative problem solving and creativity is focused on ”doing the right things”. Engineering design, which is a sub-process within PD, can be viewed as problem solving or a decision-making process. New technologies in computer science and new software tools open the way to new approaches for the solution of mechanical problems. Product data management (PDM) technology and tools can enable concurrent engineering (CE) by managing the formal product data, the relations between the individual data objects, and their relation to the PD process. Many engineering activities deal with the relation between behavior and shape. Modern CAD systems are highly productive tools for concept embodiment and detailing. The finite element (FE) method is a general tool used to study the physical behavior of objects with arbitrary shapes. Since a modern CAD technology enables design modification and change, it can support the innovative dimension of engineering as well as the verification of physical properties and behavior. Concepts and detailed solutions have traditionally been evaluated and verified with physical testing. Numerical modeling and simulation is in many cases a far more time efficient method than testing to verify the properties of an artifact. Numerical modeling can also support the innovative dimension of problem solving by enabling parameter studies and observations of real and synthetic behavior. Simulation-driven design is defined as a design process where decisions related to the behavior and performance of the artifact are significantly supported by computer-based product modeling and simulation. A framework for product modeling, that is based on a modern CAD system with fully integrated FE modeling and simulation functionality provides the engineer with tools capable of supporting a number of engineering steps in all life-cycle phases of a product. Such a conceptual framework, that is based on a moderately coupled approach to integrate commercial PDM, CAD, and FE software, is presented. An object model and a supporting modular modeling methodology are also presented. Two industrial cases are used to illustrate the possibilities and some of the opportunities given by simulation-driven design with the presented methodology and framework.
keywords CAE; FE Method; Metamodel; Object Model; PDM; Physical Behavior, System
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ga9908
id ga9908
authors Senagala, Mahesh
year 1999
title Artistic Process, Cybernetics of Self and the Epistemology of Digital Technology
source International Conference on Generative Art
summary From the viewpoint of Batesonian cybernetics, ‘conscious purpose’ and artistic process are distinct ends of a spectrum of the functioning of self. Artistic activities— by which I mean art, poetry, play, design, etc.— involve processes that are beneath the stratum of consciousness. By definition, consciousness is selective awareness and is linear in execution and limited in its capability to synthesize complex parameters. As Heidegger pointed out, technology is a special form of knowledge (episteme). A machine is a manifestation of such a knowledge. A machine is a result of conscious purpose and is normally task-driven to accomplish a specific purpose(s). The questions this paper raises are to do with the connections between conscious purpose, artistic process and digital technology. One of the central questions of the paper is "if artistic process requires an abandonment or relinquishment of conscious purpose at the time of the generation of the work of art, and if the artistic process is a result of vast number of ‘unconscious’ forces and impulses, then could we say that the computer would ever be able to ‘generate’ or ‘create’ a work of art?" In what capacity and what role would the computer be a part of the generative process of art? Would a computer be able to ‘generate’ and ‘know’ a work of art, which, according to Bateson, requires the abandonment of conscious purpose? The ultimate goal of the paper is to unearth and examine the potential of the computers to be a part of the generative process of what Bateson has called "total self as a cybernetic model". On another plane of discourse, Deleuze and Guattari have added a critical dimension to the discourse of cybernetics and models of human mind and the global computer networks. Their notion of ‘rhizome’ has its roots in Batesonian cybernetics and the cybernetic couplings between the ‘complex systems’ such as human mind, biological and computational systems. Deleuze and Guattari call such systems as human brain and the neural networks as rhizomatic. Given the fact that the computer is the first known cybernetic machine to lay claims to artificial intelligence, the aforementioned questions become even more significant. The paper will explore how, cybernetically, the computer could be ‘coupled’ with ‘self’ and the artistic process — the ultimate expression of human condition. These philosophical and artistic explorations will take place through a series of generative artistic projects (See the figure below for an example) that aim at understanding the couplings and ‘ecology’ of digital technology and the cybernetics of self.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c041
authors Vakalo, E., Malkawi, A.M. and Emdanat, S.S.
year 1999
title An AI-based shell for linking thermal and form-making considerations
source Automation in Construction 8 (4) (1999) pp. 455-462
summary Over the past few years, our team has developed several computer-based models in the areas of architectural form-making and thermal analysis. These programs were designed to deal with specific problems and use a range of techniques including machine vision, knowledge-based systems, and artificial intelligence techniques. Recently, a project that integrates these systems was initiated. Its objective is to design an intelligent computer shell that forms the basis for this integration in the domain of architecture. The paper discusses the development of the shell and its use to analyze and study architectural form and its determinants. The shell accommodates modules that link the morphological structure of architectural design with more of its determinants (e.g., structural, acoustical, and lighting considerations, as well as code requirements). The paper presents and discusses the background of the shell, its structure, its methods of knowledge representation, and an example of its use.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 1a3d
authors Willey, David
year 1999
title Sketchpad to 2000: From Computer Systems to Digital Environments
doi https://doi.org/10.52842/conf.ecaade.1999.526
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 526-532
summary It can be argued that over the last thirty five years computer aided architectural design (CAAD) has made little impact in terms of aiding design. The paper provides a broadbrush review of the last 35 years of CAAD research and suggests that the SKETCHPAD notion that has dominated CAAD since 1963 is now a flawed concept. Then the discipline was replete with Modernist concepts of optimal solutions, objective design criteria and universal design standards. Now CAD needs to proceed on the basis of the Post Modern ways of thinking and designing opened up by digital techniques - the Internet, multimedia, virtual reality, electronic games, distance learning. Computers facilitate information flow and storage. In the late seventies and eighties the CAAD research community's response to the difficulties it had identified with the construction of integrated digital building models was to attempt to improve the intelligence of the computer systems to better match the understanding of designers. Now it is clear that the future could easily lie with CAAD systems that have almost no intelligence and make no attempt to aid the designer. Communication is much more central to designing than computing.
keywords History, Intelligence, Interface, Sketchpad, Web
series eCAADe
email
last changed 2022/06/07 07:56

_id d59a
authors Zarnowiecka, Jadwiga C.
year 1999
title AI and Regional Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.584
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 584-588
summary In 1976 Richard Foqué established periods in the development of methods of designing. The first stage (the 50's and early 60's) - automatization of the designing process - properly identified language of description that is understood by a machine is vital. Christopher Alexander publishes 'Pattern Language'. The second stage (late 60's) - the use of the Arts - research techniques as interview, questionnaire, active observation; ergonomic aspects are also taken into consideration. The third stage (starts at the turn of the 60's and 70's) - co-participation of all of the parties involved in the designing process, and especially the user. The designing process becomes more complex but at the same time more intelligible to a non-professional - Alexander's 'Pattern Language' returns. It's been over 20 years now since the publication of this work. In the mid 70's prototypes of integrate building description are created. We are dealing now with the next stage of the designing methods development. Unquestionable progress of computer optimalization of technical and economical solutions has taken place. It's being forecasted that the next stage would be using computer as a simulator of the designing process. This stage may be combined with the development of AI. (Already in 1950 Alan Turing had formulated the theoretical grounds of Artificial Intelligence.) Can the development of the AI have the influence on the creation of present time regional architecture? Hereby I risk a conclusion that the development of AI can contribute to the creation of modern regional architecture.
keywords Design Process, Artificial Intelligence, Regional Architecture
series eCAADe
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 2fe1
authors Arroyo, Julio and Chiarella, Mauro
year 1999
title Infographic: Its Incorporation and Relativity in Architectural Design Process
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 313-318
summary This paper is about an architectural design workshop regularly held at a public university in Santa Fe, Argentina. The class is about 150 students large, with different informatic capabilities and hardware facilities. The design problem of the workshop, which is one year long, is the relationship between architectural project and the construction of the urbanity. This implies both a physical intervention and a cultural expression. Pedagogy seeks students to overcome individualism, characteristic that is hardly induced by PCs, making a socialized design experience. A complementary and simultaneous use of graphic and infographic data is one of the main criteria of the workshop. The idea is to look for students to reach a wide vision by means of the use of different representation systems and means of information. Digital graphic is introduced early in the design process as an electronic model of urban context. It is considered as a one among many other graphic resources and is used together with ordinary models, geometric drawings, aerial and regular photography and hand made sketches. This paper relates the results that have been obtained when students were asked to make an analytic and sensitive approach to the relationship site - urban situation. This relationship has a great importance for the workshop since its goal is to make students to understand the the value of designing in and for the city.
series SIGRADI
email
last changed 2016/03/10 09:47

_id e15c
authors Bartenbach, Christian and Witting, Walter
year 1999
title VDU WORK IN DIFFERENT LIGHTING CONDITIONS
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 7-28
summary In order to avoid the disadvantages of purely subjective methods in a technical evaluation of daylight and artificial light systems, the Bartenbach LichtLabor developed new test methods which can determine objectively and quantitatively the visual or psycho-physiological stress connected with VDU work [1], depending on different lighting conditions. Daylight and artificial lighting systems were tested with these methods and compared by using the performances achieved by the test subjects. Some highly significant differences in performance done under the individual lighting systems became apparent and demonstrated that the visual stress or the physical or physiological fatigue from an ergonomic viewpoint depends largely on the lighting conditions at the workplace. This holds true for daylight systems (glare protection, re-directing lamellae, clear window as a control condition) as well as for purely artificial lighting systems where especially the choice of color temperature of the light and the used control gear (conventional or electronic) determine the resulting performance. Optimized lighting also positively affects the productivity and economicy for the design of workplaces that take the human factor into account.
keywords VDU, Optimized Lighting, Performance Test, Lighting System, Model Simulation, Real Environments
series other
type normal paper
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 11:27

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_670941 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002