CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id ga0015
id ga0015
authors Daru, R., Vreedenburgh, E. and Scha, R.
year 2000
title Architectural Innovation as an evolutionary process
source International Conference on Generative Art
summary Traditionally in art and architectural history, innovation is treated as a history of ideas of individuals (pioneers), movements and schools. The monograph is in that context one of the most used forms of scientific exercise. History of architecture is then mostly seen as a succession of dominant architectural paradigms imposed by great architectural creators fighting at the beginning against mainstream establishment until they themselves come to be recognised. However, there have been attempts to place architectural innovation and creativity in an evolutionary perspective. Charles Jencks for example, has described the evolution of architectural and art movements according to a diagram inspired by ecological models. Philip Steadman, in his book "The Evolution of Designs. Biological analogy in architecture and the applied arts" (1979), sketches the history of various biological analogies and their impact on architectural theory: the organic, classificatory, anatomical, ecological and Darwinian or evolutionary analogies. This last analogy "explains the design of useful objects and buildings, particularly in primitive society and in the craft tradition, in terms of a sequence of repeated copyings (corresponding to inheritance), with small changes made at each stage ('variations'), which are then subjected to a testing process when the object is put into use ('selection')." However, Steadman has confined his study to a literature survey as the basis of a history of ideas. Since this pioneering work, new developments like Dawkins' concept of memes allow further steps in the field of cultural evolution of architectural innovation. The application of the concept of memes to architectural design has been put forward in a preceding "Generative Art" conference (Daru, 1999), showing its application in a pilot study on the analysis of projects of and by architectural students. This first empirical study is now followed by a study of 'real life' architectural practice. The case taken has a double implication for the evolutionary analogy. It takes a specific architectural innovative concept as a 'meme' and develops the analysis of the trajectory of this meme in the individual context of the designer and at large. At the same time, the architect involved (Eric Vreedenburgh, Archipel Ontwerpers) is knowledgeable about the theory of memetic evolution and is applying a computer tool (called 'Artificial') together with Remko Scha, the authoring computer scientist of the program who collaborates frequently with artists and architects. This case study (the penthouse in Dutch town planning and the application of 'Artificial') shall be discussed in the paper as presented. The theoretical and methodological problems of various models of diffusion of memes shall be discussed and a preliminary model shall be presented as a framework to account for not only Darwinian but also Lamarckian processes, and for individual as well as collective transmission, consumption and creative transformation of memes.
keywords evolutionary design, architectural innovation, memetic diffusion, CAAD, penthouses, Dutch design, creativity, Darwinian and Lamarckian processes
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id fb37
authors Knight, T.
year 1999
title Applications in architectural design and education and practice
source Report for the NSF/MIT Workshop on Shape Computation, Cambridge, Mass., 25-26 April 1999
summary Shortly after shape grammars were invented by Stiny and Gips, a two part project for shape grammars was outlined by Stiny. In a 1976 paper,1 Stiny described "two exercises in formal composition". These simple exercises became the foundation for the many applications of shape grammars that followed, and suggested the potential of such applications in education and practice. The first exercise showed how shape grammars could be used in original composition, that is, the creation of new design languages or styles from scratch. The second exercise showed how shape grammars could be used to analyze known or existing design languages. Both exercises illustrated the unique characteristics of the shape grammar formalism that helped motivate a quarter century (almost!) of shape grammar work. General but simple, formal yet intuitive: qualities that continue to make shape grammar disciples and confound skeptics. The history of shape grammar applications in architecture and the arts for the two complementary purposes of synthesis and analysis, as well as for a third, joint purpose is sketched in the first section of this report. These three categories of applications do not have rigid boundaries. They are used in this report mostly as a framework for discussion. An overview of the roles of shape grammar applications in education and practice is given in the second section. New and ongoing issues concerning shape grammars in education and practice are discussed in the last section.
series report
last changed 2003/04/23 15:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6e36
authors Castañé, Dora
year 1999
title Documentation and Patrimony. The Digital Era: A Channel for Memory Recovery
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 451-457
summary The end of the millennium with its new digital technology is contributing important tools to the area of documentation and historical patrimony those of us who support the preservation of memories think that a very important way of personalizing and strengthening our identity is to provide to those who inhabit the city with heightened awareness towards the values of our past. The revitalization requires that the patrimony in itself be valued. At the same time, it necessitates the preparation of a great amount of information utilizing cataloguing, research databases, and other materials be accessible to all citizens. This piece of work shares the different digital data base experiences that are being developed in the CEDODAL foundation art and latinamerican architecture (center for documentation), which is under the direction of the architect Ramon Gutierrez, a research services organization, and diverse higher education institutions (universities). Four bases are introduced, each with different thought and criterion structures in the definition of fields as well as in their dynamic visualizations. Each of them possesses great quantities of digital images, blue prints, and texts. In three of those bases, the data is the output from teams of researchers in different topics through special arrangements with Santa Fe's provincial water), Fonart, and city government. At the same time, the CEDODAL catalogues its documentaries with great quantities of photographic information, blue prints, research passages, and a library.
series SIGRADI
email
last changed 2016/03/10 09:48

_id 5f9c
authors Castello, Regina
year 1999
title GIS and the Investigation of the Environmental Heritage
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 219-224
summary This paper presents an investigation on the architectural, natural, and cultural resources in the southern part of the state of Rio Grande do Sul, according to their historical or environmental value, identifying natural and cultural elements known and valued by local communities, regardless their experts’ classification. Resources are identified by means of geographical information systems, combined with field information. The area comprises the coastal strip and the plains located in the last frontier of the Brazilian territory and the water system dominated by the lakes Patos, Mangueira and Mirim. The inventory of the environmental, sociocultural and economic heritage provides the necessary insight for issuing new development alternatives based on local resources. Research activities will include: the ellaboration of general and thematic maps, based on LANDSAT 5 [bands 3, 4 and 5] images; aerial photographs; DSG/SGE and municipal maps [scales 1:250.000, 1:50.000 and 1:25.000]; field work for the recognition of remarkable elements; interviews with residents for assessing their perception of local values; and community and institutional statements. These informations, comprising the elements valued by their architectural and urban quality, historical relevance and environmental significance, organised in a database, will provide contextual guidelines for the planning of a tourist route. This route, delineated by the preservation, recovery and use of representative local resources, valued as expressions of a native culture, evocates the initial occupation of the gaúcho territory, and may be touristically promoted as "The Gaúcho’s Way". The project also aims at showing the potential offered by GIS for identifying and evaluating specific spatial characteristics.
keywords Environmental Planning, Historical Preservation
series SIGRADI
email
last changed 2016/03/10 09:48

_id 99ce
authors Forowicz, T.
year 1999
title Modeling of energy demands for residential buildings with HTML interface
source Automation in Construction 8 (4) (1999) pp. 481-487
summary This paper presents the package for calculation of energy and cost demands for heating, cooling and hot water. The package represents a new kind of approach to developing software, employing user (client) and server (program provider) computers connected by Internet. It is mounted on the owner server and is available to the whole world through the Web browser. The package was developed as a simplified tool for estimating energy use in four types of new and old houses, located in 900 US cities. The computing engine utilizes the database that was compiled by LBL in support of the 'Affordable Housing through Energy Conservation' Project with over 10000 DOE-2.1 simulations. The package consists of 69 routines and scripts coded in four languages: HTML, Perl, C, and FORTRAN. The modeling, the programming, and the future perspectives of the new kind of computational tool are presented. The paper discusses further technical limitations, as well as suggestions for further improvements and development. Especially important is the problem of multi-user access; ways for its solution are proposed.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 9088
authors Hartkopf, V. and Loftness, V.
year 1999
title Global relevance of total building performance
source Automation in Construction 8 (4) (1999) pp. 377-393
summary Global population and environmental trends demand a radical departure from current building and developmental processes. Applying total building performance thinking can reduce energy consumption, pollution and waste in existing and new construction by a factor of 4 and simultaneously can improve quality of life within buildings––measured through occupant satisfaction, health and productivity. The further development of advanced energy and water systems, and the application of appropriate technology and systems integration concepts will help to enable the elimination of `waste-streams', avoiding obsolescence, as well as managing industrial and agricultural nutrient streams. Instead of treating buildings and their contents as `pre-garbage', worse `pre toxic-waste', all material flows can be considered within life cycles for `cradle to cradle' use. These concepts can make major contributions towards the creation of more sustainable lifestyles with even greater quality in the industrialized countries and the development and implementation of sustainable urban and building infrastructures in rapidly emerging economies. Rather than the continued export of non-sustainable building solutions, this paper argues for the development and demonstration of such practices in the industrialized countries that would create a progressive 'pull' to enable the appropriate implementation of new practices.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 23df
authors Kolarevic, Branko and Ng, Edward Y.Y.
year 1999
title Net-enabled Collective Design Authorship
doi https://doi.org/10.52842/conf.acadia.1999.302
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 302-315
summary The paper describes an experiment in collective design authorship conducted within a semester-long virtual design studio. Students at two geographically distant institutions were asked to design a "Place2Meet on the Water," a small floating pavilion to be assembled from hollow-section steel components. The first part of the studio was devoted to a study of precedents, done in teams of five students from both institutions, who worked both synchronously and asynchronously over the Internet. The students' work was continuously reviewed through virtual crits conducted using web pages and video conferencing. The second part of the virtual design studio, devoted to the actual design of the pavilion, was divided into five closely related phases. After each phase students had to place their designs into a common database. They then had to browse through submitted designs and choose one to develop further; they were not allowed to continue with their own designs. That way, students implicitly formed teams and engaged in collective design authorship that was enabled by the network and supported by the design database. The design-centered research project presented in this paper also examines the issues of teaching methods and whether the quality of design could be improved in a networked design environment based on collective authorship and how such an environment can affect the nature of the produced designs.
series ACADIA
email
last changed 2022/06/07 07:51

_id 0fbb
authors Moselhi, O. and Shehab-Eldeen, T.
year 1999
title Automated detection of surface defects in water and sewer pipes
source Automation in Construction 8 (5) (1999) pp. 581-588
summary Automation is gaining momentum in industry, particularly in rehabilitation and inspection works of underground infrastructure facilities. This paper describes a model for automating inspection and identification of surface defects in underground water and sewer pipes. The paper describes the current efforts in identification of surface defects in underground water and sewer mains, and presents an automated system designed to assist infrastructure engineers in diagnosing defects in this class of pipe networks. It describes the general architecture of the system and its basic components, and focuses primarily on four modules designed for automating image acquisition, image processing, features extraction and classification of defects.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id f02e
authors Traverso, Giovanni and Vighy, Paola
year 1999
title FULL-SCALE MODELING FOR THE LIGHTING DESIGN OF A NEW PAVILION AT THE VENICE BIENNALE
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 51-56
summary The research which is presented in this paper is related to a lighting topic and part of an architectural project for a pavilion at the Biennale of Venice, used for modern art exhibitions. The building is located along a Venetian canal: the roof form is curved in a way to allow daylight, reflected by the water, to penetrate in the lower part of the building, determining the atmosphere for the sculpture exhibition. In the upper part of the building, where the rooms have a barrel-shaped roof, we want to provide good diffuse lighting to emphasise the quality of the materials and colors of paintings. Starting point is a study of lighting techniques related to a temporary exhibition of modern art. Special attention will be paid to some considerations concerning the question of conservation, the integration of artificial lighting and daylighting, the modeling effects of light and its color performance as well as the effect of light. The study has been carried out testing (full-) scale models in the Lighting Laboratory at the University College of London.
keywords Lighting Techniques, Full-scale Experiments, Daylight Control, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 11:29

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
doi https://doi.org/10.52842/conf.ecaade.1999.169
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 411c
authors Ataman, Osman and Bermúdez (Ed.)
year 1999
title Media and Design Process [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1999
source ACADIA ‘99 Proceedings / ISBN 1-880250-08-X / Salt Lake City 29-31 October 1999, 353 p.
summary Throughout known architectural history, representation, media and design have been recognized to have a close relationship. This relationship is inseparable; representation being a means for engaging in design thinking and making and this activity requiring media. Interpretations as to what exactly this relationship is or means have been subject to debate, disagreement and change along the ages. Whereas much has been said about the interactions between representation and design, little has been elaborated on the relationship between media and design. Perhaps, it is not until now, surrounded by all kinds of media at the turn of the millennium, as Johnson argues (1997), that we have enough context to be able to see and address the relationship between media and human activities with some degree of perspective.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 7436
authors Barría Chateau, H., Muñoz Viveros, C. and Cerda Brintrup, G.
year 1999
title Virtual Tour Through Modern Architecture in Conception
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 475-477
summary This paper describes the development of a project that was selected and sponsoured by the Regional Competition FONDART 1998 (Funds for the Development of Arts of the Regional Secretary of Education) that follows the aim of cultural diffusion. Towards the middle of the 30s, the city of Concepción developed an architecture distinctly colonial, neoclassical and eclectic. An earthquake in 1939 abruptly interrupted this scene, destroying the enterity of its most important buildings. The reconstruction of the city followed the manifestoes of Modern Architecture, consolidating the urban importance of buildings such us the Law Courts, the Railway Station and the Regional Government, that emerged as the new architectural and cultural heritage of the city. The project consisted on the modeling of eleven buildings of the modern architectural heritage, and on the generation of 42 virtual tours through the buildings that were finally edited on a 16' video. This video allows the spectator to make a virtual tour through the original modern heritage of the city, nowadays demolished, altered, and sometimes, even forgotten. This project pretends to widen the ways of comprehension of our cultural identity by using computer modelling and animation as a tool for the conservation of the architectural heritage; and creating a record that can be used as a reference and as an instrument of cultural difussion.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 9e00
authors Bridges, Alan
year 1999
title Progress? What Progress?
doi https://doi.org/10.52842/conf.ecaade.1999.321
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 321-326
summary This paper briefly reviews some of the history of computer graphics standardisation and then presents two specific case studies: one comparing HTML with SGML and Troff and the other comparing VRML with the Tektronix® Interactive Graphics Language implementation of the ACM Core Standard. In each case, it will be shown how the essential intellectual work carried out twenty years ago still lies at the foundations of the newer applications.
keywords SGML, HTML, VRML
series eCAADe
email
last changed 2022/06/07 07:54

_id f11d
authors Brown, K. and Petersen, D.
year 1999
title Ready-to-Run Java 3D
source Wiley Computer Publishing
summary Written for the intermediate Java programmer and Web site designer, Ready-to-Run Java 3D provides sample Java applets and code using Sun's new Java 3D API. This book provides a worthy jump-start for Java 3D that goes well beyond the documentation provided by Sun. Coverage includes downloading the Java 2 plug-in (needed by Java 3D) and basic Java 3D classes for storing shapes, matrices, and scenes. A listing of all Java 3D classes shows off its considerable richness. Generally, this book tries to cover basic 3D concepts and how they are implemented in Java 3D. (It assumes a certain knowledge of math, particularly with matrices, which are a staple of 3D graphics). Well-commented source code is printed throughout (though there is little additional commentary). An applet for orbiting planets provides an entertaining demonstration of transforming objects onscreen. You'll learn to add processing for fog effects and texture mapping and get material on 3D sound effects and several public domain tools for working with 3D artwork (including converting VRML [Virtual Reality Markup Language] files for use with Java 3D). In all, this book largely succeeds at being accessible for HTML designers while being useful to Java programmers. With Java 3D, Sun is betting that 3D graphics shouldn't require a degree in computer science. This book reflects that philosophy, though advanced Java developers will probably want more detail on this exciting new graphics package. --Richard Dragan Topics covered: Individual applets for morphing, translation, rotation, and scaling; support for light and transparency; adding motion and interaction to 3D objects (with Java 3D classes for behaviors and interpolators); and Java 3D classes used for event handling.
series other
last changed 2003/04/23 15:14

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.374
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id ga9913
id ga9913
authors Ceccato, Cristiano and Liauw, Laurence
year 1999
title Parametric Urbanism: Explorations in Generative Urban Design
source International Conference on Generative Art
summary This paper is the result of several years of research by the Authors into the new field of generative design, as applied to urbanism. Its purpose is to formulate a concept of parametric urbanism and data-driven urban design, and how it departs from existing concepts of urban analysis and resulting design methods. This paper first gives a definition and description of the notion of generative urban design, and its relevance to current the practice of architecture and global political, sociological and economic developments. The difference between dogmatic forms of urban design and new parametric research methods is explained, and the Authors argue the fundamental relevance of using examples of post-colonial large-scale projects. In support of this, the Authors explore the widening field of research into parametric and data-driven architecture and urban design and the history of rule-based and evolutionary design methodologies. The paper illustrates examples of successful research in the field of parametric and rule-based urban design, by the Authors as well as colleagues within the field. It surveys the Authors’ work done at the Architectural Association School of Architecture, at the Hong Kong Polytechnic University School of Design, as well as in practice and research-oriented consultancy. The projects illustrated support the thesis of parametric urbanism by showing its power and versatility when applied to very large-scale projects, in particular within the People’s Republic of China.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0dc3
authors Chambers, Tom and Wood, John B.
year 1999
title Decoding to 2000 CAD as Mediator
doi https://doi.org/10.52842/conf.ecaade.1999.210
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 210-216
summary This paper will present examples of current practice in the Design Studio course of the BDE, University of Strathclyde. The paper will demonstrate an integrated approach to teaching design, which includes CAD among other visual communication techniques as a means to exploring design concepts and the presentation of complex information as part of the design process. It will indicate how the theoretical dimension is used to direct the student in their areas of independent study. Projects illustrated will include design precedents that have involved students in the review and assessment of landmarks in the history of design. There will be evidence of how students integrate DTP in the presentation of site analysis, research of appropriate design precedents and presentation of their design solutions. CADET underlines the importance of considering design solutions within the context of both our European cultural context and of assessing the environmental impact of design options, for which CAD is eminently suited. As much as a critical method is essential to the development of the design process, a historical perspective and an appreciation of the sophistication of communicative media will inform the analysis of structural form and meaning in a modem urban context. Conscious of the dynamic of social and historical influences in design practice, the student is enabled "to take a critical stand against the dogmatism of the school "(Gadamer, 1988) that inevitably insinuates itself in learning institutions and professional practice.
keywords Design Studio, Communication, Integrated Teaching
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_820924 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002