CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 61

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id sigradi2005_097
id sigradi2005_097
authors Luhan, Gregory A.
year 2005
title At Full-Scale | From Installation to Inhabitation
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 97-102
summary In 1999, the University of Kentucky (then the College of Architecture, now the College of Design-School of Architecture) established a Digital Design Studio to combine the strong tradition of handcrafting in the existing design program with those technologically sophisticated tools shaping the profession for the 21st century. Over a six-year period, this all-digital design studio has developed from a pedagogical model for developing new different ways of seeing and making architecture to a proof-of-concept real-world experience to coalesce state-of-the-art visualization techniques with current expectations of practice. Creating dynamic links between students, industry, and the profession has enabled the School of Architecture to provide leadership for practicing architects, to create an effective dialogue between industrial and design professionals, and to incorporate successfully leading-edge design pedagogy with the more technological applications that will shape the future of architecture practice. The materials presented here reflect a sequence of comprehensive digital projects produced under my direction from 1999 through 2005.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 29c6
authors Shaw, N. and Kimber, W.E.
year 1999
title STEP and SGML/XML: what it means, how it works
source XML Europe ‘99 Conference Proceedings, Graphic Communication Association, 1999, pp. 267-70
summary The STEP standard, ISO 10303, is the primary standard for data representation and interchange in the product design and manufacturing world. Originally designed to enable the interchange of 3-D CAD models between different systems, like SGML, it has defined and uses a general mechanism for representing and managing complex data of any type. Increasingly products are defined as solid models that are stored in product databases. These databases are not limited to shape but contain a considerable wealth of other information, such as materials, failure modes, task descriptions, product related meta-data such as approvals and much more. The product world is of course also replete with documents, from requirements through specifications to user manuals. These documents both act as input to the product development processes and are output as well. Indeed in some cases documents form part of the product and are given part numbers. It is therefore not surprising to find that there are many companies where there are very real requirements to interact and interoperate between the product data and documents, specifically in the form of SGML-based data. This paper reports on work in progress to bring the two worlds together. This is primarily being done through the SGML and Industrial Data Preliminary Work Item under ISO TC184/SC4. The need for common capabilities for using STEP and SGML together has been obvious for a long time as can be seen from the inclusion of product data and SGML-based data within initiatives such as CALS. However, until recently, this requirement was never satisfied, for various reasons. For the last year or more, a small group has been actively pursuing this area and gaining the necessary understandings across the different standards. It is this work that is reported here. The basic thrust of the work is to answer the questions: Can STEP and SGML be used together and, if so, how?
series other
last changed 2003/04/23 15:50

_id 6e36
authors Castańé, Dora
year 1999
title Documentation and Patrimony. The Digital Era: A Channel for Memory Recovery
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 451-457
summary The end of the millennium with its new digital technology is contributing important tools to the area of documentation and historical patrimony those of us who support the preservation of memories think that a very important way of personalizing and strengthening our identity is to provide to those who inhabit the city with heightened awareness towards the values of our past. The revitalization requires that the patrimony in itself be valued. At the same time, it necessitates the preparation of a great amount of information utilizing cataloguing, research databases, and other materials be accessible to all citizens. This piece of work shares the different digital data base experiences that are being developed in the CEDODAL foundation art and latinamerican architecture (center for documentation), which is under the direction of the architect Ramon Gutierrez, a research services organization, and diverse higher education institutions (universities). Four bases are introduced, each with different thought and criterion structures in the definition of fields as well as in their dynamic visualizations. Each of them possesses great quantities of digital images, blue prints, and texts. In three of those bases, the data is the output from teams of researchers in different topics through special arrangements with Santa Fe's provincial water), Fonart, and city government. At the same time, the CEDODAL catalogues its documentaries with great quantities of photographic information, blue prints, research passages, and a library.
series SIGRADI
email
last changed 2016/03/10 09:48

_id bacd
authors Abadí Abbo, Isaac
year 1999
title APPLICATION OF SPATIAL DESIGN ABILITY IN A POSTGRADUATE COURSE
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 75-82
summary Spatial Design Ability (SDA) has been defined by the author (1983) as the capacity to anticipate the effects (psychological impressions) that architectural spaces or its components produce in observers or users. This concept, which requires the evaluation of spaces by the people that uses it, was proposed as a guideline to a Masters Degree Course in Architectural Design at the Universidad Autonoma de Aguascalientes in Mexico. The theory and the exercises required for the experience needed a model that could simulate spaces in terms of all the variables involved. Full-scale modeling as has been tested in previous research, offered the most effective mean to experiment with space. A simple, primitive model was designed and built: an articulated ceiling that allows variation in height and shape, and a series of wooden panels for the walls and structure. Several exercises were carried out, mainly to experience cause -effect relationships between space and the psychological impressions they produce. Students researched into spatial taxonomy, intentional sequences of space and spatial character. Results showed that students achieved the expected anticipation of space and that full-scale modeling, even with a simple model, proved to be an effective tool for this purpose. The low cost of the model and the short time it took to be built, opens an important possibility for Institutions involved in architectural studies, both as a research and as a learning tool.
keywords Spatial Design Ability, Architectural Space, User Evaluation, Learning, Model Simulation, Real Environments
series other
type normal paper
email
more http://info.tuwien.ac.at/efa
last changed 2004/05/04 11:27

_id f500
authors Almeida Sampaio, A.
year 1999
title Automation of Deck Bridge Representations
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 69-79
summary The bridge deck has a apparent simple shape, but it is the result of an adequate combination of two longitudinal geometric components: the deck shape evolution along de longitudinal section the layout of the road, that acts in simultaneous over a cross section, defining the deck exact shape. A geometric modelling computer programme was developed for box girder decks, allowing the generation of cross sections along the deck, defined with correct shape and location. In the elaboration of the deck plan drawings, the geometric information of the real deck shape is required. This information is not managed in an integrated and automatic way. On the creation of these drawings, directly executed over a graphic system, the time consumed is considerable and it is easy to comet errors. This paper describes the drawing module included in the computer program refereed. The deck plan projections are obtained, in DXF format drawing files, using the geometric information obtained from 3D-deck model. Using the drawing module it is possible to generate the usual deck drawings required in bridge design process. Then, his module is a great support for the design process within its geometric design stage.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id d5c8
authors Angelo, C.V., Bueno, A.P., Ludvig, C., Reis, A.F. and Trezub, D.
year 1999
title Image and Shape: Two Distinct Approaches
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 410-415
summary This paper is the result of two researches done at the district of Campeche, Florianópolis, by the Grupo PET/ARQ/UFSC/CAPES. Different aspects and conceptual approaches were used to study the spatial attributes of this district located in the Southern part of Santa Catarina Island. The readings and analysis of two researches were based on graphic pistures builded with the use of Corel 7.0 e AutoCadR14. The first research – "Urban Development in the Island of Santa Catarina: Public Space Study"- examined the urban structures of Campeche based on the Spatial Syntax Theory developed by Hillier and Hanson (1984) that relates form and social appropriation of public spaces. The second research – "Topoceptive Characterisation of Campeche: The Image of a Locality in Expansion in the Island of Santa Catarina" -, based on the methodology developed by Kohlsdorf (1996) and also on the visual analysis proposed by Lynch (1960), identified characteristics of this locality with the specific goal of selecting attributes that contributed to the ideas of the place its population held. The paper consists of an initial exercise of linking these two methods in order to test the complementarity of their analytical tools. Exemplifying the analytical procedures undertaken in the two approaches, the readings done - global (of the locality as a whole) and partial (from parts of the settlement) - are presented and compared.
series SIGRADI
email
last changed 2016/03/10 09:47

_id f317
authors Arvin, Scott A. and House, Donald H.
year 1999
title Modeling Architectural Design Objectives in Physically Based Space Planning
doi https://doi.org/10.52842/conf.acadia.1999.212
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 212-225
summary Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, which allows a designer to easily make decisions whose consequences immediately propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design itself. In our approach, the designer creates a space plan by specifying and modifying graphic design objectives rather than by directly manipulating primitive geometry. The plan adapts to the changing state of objectives by applying the physics of motion to its elements. For design objectives to have an effect on a physically based space plan, they need to be able to apply appropriate forces to space plan elements. Space planning can be separated into two problems, determining topological properties and determining geometric properties. Design objectives can then be categorized as topological or geometric objectives. Topological objectives influence the location of individual spaces, affecting how one space relates to another. Geometric objectives influence the size and shape of space boundaries, affecting the dimensions of individual walls. This paper focuses on how to model a variety of design objectives for use in a physically based space planning system. We describe how topological objectives, such as adjacency and orientation, can be modeled to apply forces to space locations, and how geometric objectives, such as area, proportion, and alignment, can be modeled to apply forces to boundary edges.
series ACADIA
email
last changed 2022/06/07 07:54

_id 5bce
authors Ceccato, Cristiano
year 1999
title Evolutionary Design Tools for Mass-Customisation
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 152-156
summary This paper describes an instance of the author’s ongoing research in the field of Generative Design. The work is based on the premise that computer-aided design (CAD) should evolve beyond its current limitation of one-way interaction, and become a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customised designs which exhibit common features. The understanding of fundamental shape-forming processes in nature inspires us to move beyond the existing CAD paradigms and re-examine the way we can benefit from the computers in design. We can use this knowledge to create a new generation of computer-based design tools which use evolutionary search algorithms to generate create a common family of individual designs optimised according to particular criteria, while supporting our design intuition. The author explores this idea by illustrating a research project between the Hong Kong Polytechnic University and Deakin University (Australia). The project implements a multi-user oriented design tool for evolutionary design, which was tailored to produce a simple object such as door handle. The paper first gives a short historical and philosophical to the work, then describes the technical and algorithmic requirements, and implementation of the system. It concludes by describing an experiment in which the system was used on a "live" test group of people to generate individual, mass-customised designs.
series SIGRADI
email
last changed 2016/03/10 09:48

_id a9b0
authors Cha, Myung Yeol and Gero, John
year 1999
title Style Learning: Inductive Generalisation of Architectural Shape Patterns
doi https://doi.org/10.52842/conf.ecaade.1999.629
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 629-644
summary Art historians and critics have defined the style as common features appeared in a class of objects. Abstract common features from a set of objects have been used as a bench mark for date and location of original works. Common features in shapes are identified by relationships as well as physical properties from shape descriptions. This paper will focus on how the computer recognises common shape properties from a class of shape objects to learn style. Shape representation using schema theory has been explored and possible inductive generalisation from shape descriptions has been investigated.
keywords Style, Inductive Generalisation, Knowledge Representation, Shape
series eCAADe
email
last changed 2022/06/07 07:55

_id ga9921
id ga9921
authors Coates, P.S. and Hazarika, L.
year 1999
title The use of genetic programming for applications in the field of spatial composition
source International Conference on Generative Art
summary Architectural design teaching using computers has been a preoccupation of CECA since 1991. All design tutors provide their students with a set of models and ways to form, and we have explored a set of approaches including cellular automata, genetic programming ,agent based modelling and shape grammars as additional tools with which to explore architectural ( and architectonic) ideas.This paper discusses the use of genetic programming (G.P.) for applications in the field of spatial composition. CECA has been developing the use of Genetic Programming for some time ( see references ) and has covered the evolution of L-Systems production rules( coates 1997, 1999b), and the evolution of generative grammars of form (Coates 1998 1999a). The G.P. was used to generate three-dimensional spatial forms from a set of geometrical structures .The approach uses genetic programming with a Genetic Library (G.Lib) .G.P. provides a way to genetically breed a computer program to solve a problem.G. Lib. enables genetic programming to define potentially useful subroutines dynamically during a run .* Exploring a shape grammar consisting of simple solid primitives and transformations. * Applying a simple fitness function to the solid breeding G.P.* Exploring a shape grammar of composite surface objects. * Developing grammarsfor existing buildings, and creating hybrids. * Exploring the shape grammar of abuilding within a G.P.We will report on new work using a range of different morphologies ( boolean operations, surface operations and grammars of style ) and describe the use of objective functions ( natural selection) and the "eyeball test" ( artificial selection) as ways of controlling and exploring the design spaces thus defined.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0020
id ga0020
authors Codignola, G.Matteo
year 2000
title [Title missing]
source International Conference on Generative Art
summary This paper is a summary of my last degree in architecture (discussed in December 1999) with Prof. Celestino Soddu and Prof. Enrica Colabella. In this work I had the possibility to reach complexity by a generative approach with the construction of a paradigm that organizes the different codes of project identity. My general objective was to design shape complexity in variable categories : 3d space surfaces, 2d drawings and 2d textures. I was to discover the identity of one of my favourite architects of the 20th century : Antoni Gaudě, by constructing codes relative to shape complexity. I defined my particular objective in the possibility to abduct from Gaudě's imaginary reference the generatives codes that operate in the logical processing I use to create a possible species project. The next step was to verify the exact working of the new generative codes by means of 3d scenaries, that are recognizable as "Antoni Gaudě specie's architecture". Whit project processing on the generative codes and not on a possible resulting shape design, I was able to organize by my general paradigm the attributes of the project's species : different shapes, different attributes (color, scale, proportion), to get to possible and different scenarys, all recognizable by the relative class codes. I chose three examples in Barcellona built during the period 1902 to 1914 : The Parco Guell, Casa Batllň and Casa Milŕ are the three reference sceneryes that I used to create the generative codes. In the second step I defined different codes that operate in sequence (it is defined in the paradigm) : The generatives codes are only subjective; they are one possible solution of my interpretation of Antoni Gaudě's identity. This codes operate in four differents ways : Geometrical codes for 2d shapes Geometrical codes for interface relations Spatial codes for 3d extrusion of 2d shapes Geometrical codes for 2d and 3d texturing of generated surfaces. By a stratified application of this codes I arrived at one idea for all the generative processes but many different, possible scenaryes, all recognizable in Gaudě's species. So, my final result has made possible sceneryes belonging to related species defined previously. At the end of my research I designed a project by combination : using Antoni Gaudě's generative codes on a new 3d scenary with a shape catalyst : the Frank Lloyd Wright Guggenheim Museum of New York. In this process I created a "hybrid scenary" : a new species of architectural look; a Guggenheim museum planned by Wright with a god pinch of Gaudě.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 84e8
authors Cohen, J.M., Markosian, L., Zeleznik, R.C., Hughes, J.F. and Barzel, R.
year 1999
title An Interface for Sketching 3D Curves
source ACM Symposium on Interactive 3D Graphics, pp. 17-22 (April 1999). ACM SIGGRAPH. Edited by Jessica Hodgins and James D. Foley
summary The ability to specify nonplanar 3D curves is of fundamental importance in 3D modeling and animation systems. Effective techniques for specifying such curves using 2D input devices are desirable, but existing methods typically require the user to edit the curve from several viewpoints. We present a novel method for specifying 3D curves with 2D input from a single viewpoint. The user rst draws the curve as it appears from the current viewpoint, and then draws its shadow on the oor plane. The system correlates the curve with its shadow to compute the curve's 3D shape. This method is more natural than existing methods in that it leverages skills that many artists and designers have developed from work with pencil and paper.
series other
last changed 2003/04/23 15:14

_id 1b4d
authors Ding, Lan
year 1999
title An Evolutionary Model for Style Representation Emergence in Design
source University of Sydney, Key Centre of Design Computing and Cognition
summary This thesis is concerned with the development of an evolutionary process model for style representation emergence in design. It explores issues involved in the interpretation of style, the concept and process of style representation emergence, an evolutionary approach based on genetic engineering, and its computational implementation. Style is a complex phenomenon in design. Interpreting and formulating design style is a difficult task. This thesis proposes a language model which interprets style space utilising hierarchical levels that map onto syntax and semantics. The style space is then formulated using a genetic description. Current studies have discussed shape semantics emergence in design, but none has been proposed for the emergence of style representation. This thesis provides the concept of style representation emergence with the emphasis on the interpretative aspect of style as well as the emergence process. It explores the emergence process of style representation through an evolutionary approach. Simulation of biological evolution appears to be very useful for design problems. This thesis develops style representation emergence through evolutionary simulation based on genetic engineering. A hierarchical evolutionary process encompassing competition as well as discovery and an evolutionary combination is proposed and developed. A computational representation of style can then be derived by the computer system through the use of this evolutionary process. This model of style representation emergence is applied to traditional Chinese architecture. An evolutionary system is implemented and presented with some examples of traditional Chinese architectural facades. The results from the implementation of the system are analysed and the utility of this model is investigated. The implementation is developed in a Unix environment using the C language. The AutoCAD package is used for the graphic representation.

series thesis:PhD
email
last changed 2003/05/15 07:25

_id a38c
authors Emdanat, S., Vakalo, E.G. and Birmingham, W.
year 1999
title Solving Form-Making Problems Using Shape Algebras and Constraint Satisfaction
doi https://doi.org/10.52842/conf.ecaade.1999.620
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 620-625
summary Shape grammars are well known approaches in design space exploration. This paper reviews the current work on shape grammars in design and suggests that considerable gains can be attained by integrating parametric shape grammar based design approaches with distributed constraint-based problem solving. Parametric grammars are represent design topologies while distributed constrain satisfaction can be used to maintain consistency and produce the space of feasible design solutions. Designers' decision making can be coordinated such that constraints cannot be violated and designs that exhibit the highest utility (value) are selected.
keywords Shape Grammar, Shape Algebra, Constraint Satisfaction
series eCAADe
email
last changed 2022/06/07 07:55

_id 6fa3
authors Gero, J.S.
year 1999
title Representation and reasoning about shapes: Cognitive and computational studies in visual reasoning in design
source C. Freksa and D. Marks (eds), Spatial Information Theory, Springer, Berlin, pp. 315-330
summary This paper describes some recent cognitively-based and computationally-based research on representing and reasoning about shapes. The cognitive studies are based on protocol analyses of designers and indicatethat visual reasoning in design involves drawings of shapes and their relationsin the generation of unexpected results. The computational studies are concerned with the development of qualitative representations of shapesthat can be used to reason about shapes. Two representations are described: half-planes and landmark-based qualitative codes. Reasoning using these representations is presented.
keywords Shape Representation, Qualitative Representation, Visual Reasoning
series other
email
last changed 2003/04/06 09:16

_id f44f
authors Huang, Ying-Hsiu
year 2000
title Investigating the Cognitive Behavior of Generating Idea Sketches. Neural Network Simulation
doi https://doi.org/10.52842/conf.caadria.2000.287
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 287-296
summary In idea sketches, there are a number of ambiguous shapes. Designers will associate and transform some shapes into others (Liu, 1993). Then, they evaluate these shapes in terms of functions and design requirements; furthermore, they would have generated other shapes that certified the design requirements (Huang, 1999). However, not only is the idea of design composed of one element, but also consisted of varied components. The purpose of this paper is to investigate how designers generate ideas of multi-component products, and to simulate this phenomenon by neural networks. At the same time, this paper attempts to study the design cognitive behavior of idea-generating stages, and explores the designers' cognitive phenomenon. Therefore, there are two stages in this paper: First, I conduct a cognitive experiment to realize how designers generate the multi-component product and acquire the sketches that designers generated. Second, I train the neural networks to simulate the behavior of idea generation and explore the cognitive phenomenon in design sketches. As a result, networks associate one shape that trained before, and then generate a complete idea. This phenomenon is similar to the cognitive behavior of designers who saw the ambiguous shape as one shape, which was retrieved from LTM. Moreover, the neural network is examined by a rectangle, which is totally different from the training patterns. The network will associate a confused shape. But the network will associate different shapes by adjusting some critical parameters. Designers can generate variable shapes from one shape, but the signal neural network can't simulate this kind of behavior. On the contrary, this paper proposes five sequential networks to generate variable shapes from the same shape and simulates how designers develop ideas.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 130b
authors Huang, Ying-Hsiu
year 1999
title A Cognitive Study of Shapes and Functions in Design Sketches: Simulating an Industrial Design Case by Neural Networks
doi https://doi.org/10.52842/conf.caadria.1999.275
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 275-284
summary The present research focuses on transforming shapes that had been drawn by designers on the sketches and on evaluating the shapes from design requirements. In this research, neural networks simulate the result from collecting shapes that designers transformed from original shapes and evaluations from all ones. There are four steps in this research: First, a cognitive experiment. I collected real shapes that designers drew and evaluations from the experiment in order to training the neural networks. Second, a transforming neural network is simulating the behavior in which designers transformed one shape into another without evaluating the design requirements. Third, a evaluating neural network that trained by the evaluations that collected from the experiment is simulating how designers criticized the shapes in terms of design requirements. Fourth, modifying program is trying to modify the evaluations that had been criticized by designers from all shapes and generating a new shape from modified evaluations. This research proposed a synthetic system that simulating the behavior during design sketching, therefore, computers could also generate some ideas like human designer.
series CAADRIA
last changed 2022/06/07 07:50

_id fb37
authors Knight, T.
year 1999
title Applications in architectural design and education and practice
source Report for the NSF/MIT Workshop on Shape Computation, Cambridge, Mass., 25-26 April 1999
summary Shortly after shape grammars were invented by Stiny and Gips, a two part project for shape grammars was outlined by Stiny. In a 1976 paper,1 Stiny described "two exercises in formal composition". These simple exercises became the foundation for the many applications of shape grammars that followed, and suggested the potential of such applications in education and practice. The first exercise showed how shape grammars could be used in original composition, that is, the creation of new design languages or styles from scratch. The second exercise showed how shape grammars could be used to analyze known or existing design languages. Both exercises illustrated the unique characteristics of the shape grammar formalism that helped motivate a quarter century (almost!) of shape grammar work. General but simple, formal yet intuitive: qualities that continue to make shape grammar disciples and confound skeptics. The history of shape grammar applications in architecture and the arts for the two complementary purposes of synthesis and analysis, as well as for a third, joint purpose is sketched in the first section of this report. These three categories of applications do not have rigid boundaries. They are used in this report mostly as a framework for discussion. An overview of the roles of shape grammar applications in education and practice is given in the second section. New and ongoing issues concerning shape grammars in education and practice are discussed in the last section.
series report
last changed 2003/04/23 15:50

_id 45e1
authors Kolarevic, Branko
year 1999
title Relations-Based Drawing
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 121-125
summary The paper describes the use of a graphic system based on regulating lines and their geometric relations as a qualitatively different medium for shape delineation and dynamic drawing manipulation. It demonstrates how the proposed relations-based approach to design can benefit designers by expanding their ability to speculate about possibilities through dynamic manipulation of the drawing's relational structure. The relational description of shapes is introduced as an explicit formulation of a strategy to form generation and creative discovery. Design begins by first laying out the interrelated regulating lines - its organizing framework. Shapes are then constructed by delineating underlying and intersecting regulating lines. By allowing some lines to control positions and orientations of other lines through geometric relations and dependencies, designers can structure the behavior of the object being designed under future transformations. As design evolves, shapes depicting an evolving design concept can be manipulated and changed dynamically, thus permitting designers to efficiently explore many different options.
series SIGRADI
email
last changed 2016/03/10 09:54

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_971644 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002