CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 620

_id 9dff
authors Van Berkel, Ben
year 1999
title Mediation
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 41-46
summary New media have been successfully taken up in music, films, car design, fashion, magazine and book publishing, the sex industry, and education. Only architecture and urban design are slow to incorporate new media technologies. To some extent, architecture and mediation are locked into a conflicting, for the most part mutually excluding, relationship. At first sight this looks logical; architecture is a place, a real, once-only place, which you experience by visiting it. You do not experience architecture through dissolving a building and electronically replicating it a billion times in the air. But all technology is social before it becomes a technique; the technology of mediation needs to be more deeply incorporated within the practice of architecture, and to be more widely understood and supported before it can be fully exploited as a tool. This process is just beginning; as yet there is no fully evolved ideological scope which incorporates the new mediated position as an essential part of architecture. New mediation technologies have taken over some of the functions of buildings, such as security, surveillance, and communication with the outside, but these are not the most relevant aspects for the practice of architecture itself.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f11d
authors Brown, K. and Petersen, D.
year 1999
title Ready-to-Run Java 3D
source Wiley Computer Publishing
summary Written for the intermediate Java programmer and Web site designer, Ready-to-Run Java 3D provides sample Java applets and code using Sun's new Java 3D API. This book provides a worthy jump-start for Java 3D that goes well beyond the documentation provided by Sun. Coverage includes downloading the Java 2 plug-in (needed by Java 3D) and basic Java 3D classes for storing shapes, matrices, and scenes. A listing of all Java 3D classes shows off its considerable richness. Generally, this book tries to cover basic 3D concepts and how they are implemented in Java 3D. (It assumes a certain knowledge of math, particularly with matrices, which are a staple of 3D graphics). Well-commented source code is printed throughout (though there is little additional commentary). An applet for orbiting planets provides an entertaining demonstration of transforming objects onscreen. You'll learn to add processing for fog effects and texture mapping and get material on 3D sound effects and several public domain tools for working with 3D artwork (including converting VRML [Virtual Reality Markup Language] files for use with Java 3D). In all, this book largely succeeds at being accessible for HTML designers while being useful to Java programmers. With Java 3D, Sun is betting that 3D graphics shouldn't require a degree in computer science. This book reflects that philosophy, though advanced Java developers will probably want more detail on this exciting new graphics package. --Richard Dragan Topics covered: Individual applets for morphing, translation, rotation, and scaling; support for light and transparency; adding motion and interaction to 3D objects (with Java 3D classes for behaviors and interpolators); and Java 3D classes used for event handling.
series other
last changed 2003/04/23 15:14

_id 24f0
authors Kram, Reed and Maeda, John
year 1999
title Transducer: 3D Audio-Visual Form-Making as Performance
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 285-291
summary This paper describes Transducer, a prototype digital system for live, audio-visual performance. Currently the process of editing sounds or crafting three-dimensional structures on a computer remains a frustratingly rigid process. Current tools for real-time audio or visual construction using computers involve obtuse controls, either heavily GUI'ed or overstylized. Transducer asks one to envision a space where the process of editing and creating on a computer becomes a dynamic performance. The content of this performance may be sufficiently complex to elicit multiple interpretations, but Transducer enforces the notion that the process of creation should itself be a fluid and transparent expression. The system allows a performer to build constructions of sampled audio and computational three-dimensional form simultaneously. Each sound clip is visualized as a "playable" cylinder of sound that can be manipulated both visually and aurally in real-time. The transducer system demonstrates a creative space with equal design detailing at both the construction and performance phase.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga9917
id ga9917
authors Maia Jr., A., Valle, R. do, Manzolli, J. and Pereira, L.N.S.
year 1999
title Generative Polymodal Music Process
source International Conference on Generative Art
summary We present underlying ideas used to develop an Algorithmic Composition software named KYKLOS. It was designed to generate music based on generalised musical scales and modes. It is an interactive sonic device to be applied in composition as well in performance. The sonic output of the whole process can be described as generalised polymodal music since “synthetic scales” are generated by the algorithm. This environment can be used in a Computer Assisted Composition manner in order to generate MIDI files. On the other hand, it can equally be used as a performance environment in which a dynamic change of parameters enables a real time control of the sonic process. Recently, we advocated that several mathematical applications in Computer Music can be understood as Sound Functors [1]. In extension, we describe here a sound functor used to model scales and modes. As can be verified, part of early investigations on mathematical structures in music studied musical scales and modes using Combinatorics, Fibonacci Series and Golden Mean in order to understand compositional processes which use modal concepts. Using the Functor definition it is possible to enumerate n-scales as a sequence of integers. Each value in that sequence gives the distance (in half tones) between two consecutive tones. For example, the sequence 3:2:2:3 is interpreted as a pentatonic scale C-Eb-F-G-Bb, and as defined above it is a C mode. So, if we apply cyclical permutations, (n-1)-sequences of numbers should be interpreted as n-modes of tones. Our algorithmic implementation is described briefly. A n-mode is defined as an array with n-1 integers [a1, a2, ...an-1]. Each array generated at k-th step can be read as a number a1a2a3 ....an-1 in decimal representation, where ai is a integer between 1 and 9. We denote the number obtained at k-th step as (a1a2a3 ...an-1)(k) . The rules to implement the algorithm are the following:1) V0 = (1, 1, 1, 1 ......,1) (initial n-mode)2) ? ai ? 11 with i= 1, 2...n-1 (octave range constraint)3) Vk = (a1a2a3 ...an-1)(k) < (b1b2b3 ...bn-1)(k+1) = Vk+1 where aj ?bj , 1? j ? n-1.4) Vmax = (13 – n, 1, 1, ...,1)In this paper we start with a theoretical view and an introduction on the algorithmic mechanism used. Further, we present a concept of man ? machine interaction used to create the composition environment. We also describe the compositional graphic interface developed and general functions of the system. Finally there is a set of music examples generated by KYKLOS as MIDI files.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 9ce0
authors Ozcan, Oguzhan
year 1999
title Education of Interactive Panorama-design in Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 223-229
doi https://doi.org/10.52842/conf.ecaade.1999.223
summary This paper mainly discusses the importance of interactive panorama in design, and its education in the MDes program, which will run at Yildiz Technical University in the year 2000. The first part of the paper summarizes the potentials of current interactive panorama technique, which was "A popular form of the public entertainment" in 19th-century. Then, it compares the real-world experiences with observations in an interactive panorama. This comparison is carried out together with technical aspects i.e. limitations, audio-visual effects, composite techniques, live video input, and conceptual aspects i.e. camera actions, natural phenomenon. The technical discussion in the paper is concentrated on the examples from newly developed tools such as Nodemedia, Electrifier, Wasabi Software, and Skypaint as well as Apple QuickTime VR Authoring Tool. The second part underlines the role of interactive panorama technique in design. In this part, the paper also summarizes how to use the technique at the beginning and, during creation of the design and in its presentation, taking the installation advantages of sound, vision, text and transition effects. The third part concentrates on the interactive panorama design as an individual project, offered in the MDes program. Then it explains how the preliminary courses were planned for this individual project and summarizes the content of the course formulated through the linear and non-linear structures of the media. Finally, considering with the future development of interactive panorama technique, the last part of the paper discusses the possible results of this education method.
keywords Interactive Media, Panoramic Image, Design Education
series eCAADe
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f317
authors Arvin, Scott A. and House, Donald H.
year 1999
title Modeling Architectural Design Objectives in Physically Based Space Planning
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 212-225
doi https://doi.org/10.52842/conf.acadia.1999.212
summary Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, which allows a designer to easily make decisions whose consequences immediately propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design itself. In our approach, the designer creates a space plan by specifying and modifying graphic design objectives rather than by directly manipulating primitive geometry. The plan adapts to the changing state of objectives by applying the physics of motion to its elements. For design objectives to have an effect on a physically based space plan, they need to be able to apply appropriate forces to space plan elements. Space planning can be separated into two problems, determining topological properties and determining geometric properties. Design objectives can then be categorized as topological or geometric objectives. Topological objectives influence the location of individual spaces, affecting how one space relates to another. Geometric objectives influence the size and shape of space boundaries, affecting the dimensions of individual walls. This paper focuses on how to model a variety of design objectives for use in a physically based space planning system. We describe how topological objectives, such as adjacency and orientation, can be modeled to apply forces to space locations, and how geometric objectives, such as area, proportion, and alignment, can be modeled to apply forces to boundary edges.
series ACADIA
email
last changed 2022/06/07 07:54

_id 1206
authors Cabezas, M., Mariano, C., Mitolo, S. and Oliva, S.
year 1999
title Transformaciones en el Proceso Enseñanza-Aprendizaje de la Geometría Descriptiva con la Apliacación de los Medios Digitales (Transformations in the Teaching/Learning Process of Descriptive Geometry with the Aplplication of Digital Media)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 347-348
summary The insert of the digital technologies in the atmosphere Áulico has left generalizing in a significant way. An example constitutes it the high percentage of students that they manifested general knowledge in the software handling in the introductory course of visual communication, as well as the voluntary presentation of practical works developed with digital means. The necessity of an answer to the requirements that arise of the students sinks to the certainty of a pedagogic compatibility among the matter to try and the teaching attended by the personal computer that would increase the Iconidad and the understanding of a topic of certain complexity like it is the geometry of the space. An educational program designed for the teaching of the Sistema Monge whose general characteristics were presented in the II Ibero-American Seminar of Digital Graph and that it will be applied as experience pilot in the course 2000, it will allow us to respond to the following queries: what place it will be given to the educational program in the formation process in connection with the other pedagogic means.
series SIGRADI
email
last changed 2016/03/10 09:47

_id b4d2
authors Caldas, Luisa G. and Norford, Leslie K.
year 1999
title A Genetic Algorithm Tool for Design Optimization
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 260-271
doi https://doi.org/10.52842/conf.acadia.1999.260
summary Much interest has been recently devoted to generative processes in design. Advances in computational tools for design applications, coupled with techniques from the field of artificial intelligence, have lead to new possibilities in the way computers can inform and actively interact with the design process. In this paper we use the concepts of generative and goal-oriented design to propose a computer tool that can help the designer to generate and evaluate certain aspects of a solution towards an optimized behavior of the final configuration. This work focuses mostly on those aspects related to the environmental performance of the building. Genetic Algorithms are applied as a generative and search procedure to look for optimized design solutions in terms of thermal and lighting performance in a building. The Genetic Algorithm (GA) is first used to generate possible design solutions, which are then evaluated in terms of lighting and thermal behavior using a detailed thermal analysis program (DOE2.1E). The results from the simulations are subsequently used to further guide the GA search towards finding low-energy solutions to the problem under study. Solutions can be visualized using an AutoLisp routine. The specific problem addressed in this study is the placing and sizing of windows in an office building. The same method is applicable to a wide range of design problems like the choice of construction materials, design of shading elements, or sizing of lighting and mechanical systems for buildings.
series ACADIA
email
last changed 2022/06/07 07:54

_id b78f
authors Clayton, M.J., Warden, Robert B., Parker, Th.W.
year 1999
title Virtual Construction of Architecture Using 3D CAD and Simulation
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 316-324
doi https://doi.org/10.52842/conf.acadia.1999.316
summary 3D modeling and computer simulations provide new ways for architecture students to study the relationship between the design and construction of buildings. Digital media help to integrate and expand the content of courses in drafting, construction and design. This paper describes computer-based exercises that intensify the students’ experience of construction in several courses from sophomore to senior level. The courses integrate content from drafting and design communication, construction, CAD, and design. Several techniques are used to strengthen students’ awareness and ability in construction. These include: · Virtual design - build projects in which students construct 3D CAD models that include all elements that are used in construction. · Virtual office in which several students must collaborate under the supervision of a student acting as project architect to create a 3D CAD model and design development documents. · Virtual sub-contracting in which each student builds a trade specific 3D CAD model of a building and all of the trade specific models must be combined into a single model. · Construction simulations (4D CAD) in which students build 3D CAD models showing all components and then animate them to illustrate the assembly process. · Cost estimating using spreadsheets. These techniques are applied and reapplied at several points in the curriculum in both technical laboratory courses and design studios. This paper compares virtual construction methods to physical design – build projects and provides our pedagogical arguments for the use of digital media for understanding construction.
series ACADIA
email
last changed 2022/06/07 07:56

_id 2145
authors Engeli, Maia and Mueller Andre
year 1999
title Digital Environments for Learning and Collaboration Architecture, Communication, Creativity, Media and Design Process
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 40-52
doi https://doi.org/10.52842/conf.acadia.1999.040
summary Digital networks are gaining importance as environments for learning and creative collaboration. Technical achievements, software enhancements, and a growing number of applicable principles make it possible to compile complex environments that satisfy many aspects necessary for creative collaboration. This paper focuses on three issues: the architecture of collaborative environments, communication in these environments and the processes inherent to creative collaboration. The information architecture of digital environments looks different from physical architecture, mainly because the material that it is made out of is information and not stone, wood or metal and the goal is to pro-vide appropriate paths and views to information. Nonetheless, many analogies can be drawn between information architecture and physical architecture, including the need for useability, aesthetics, and consistency. To communicate is important for creative collaboration. Digital networks request and enable new strategies for communicating. Regarding the collaborative creative process we have been able to detect principles and features that enhance this process, but there are still many unanswered questions. For example, the environment can enable and improve the frequency of surprise and coincidence, two factors that often play decisive roles in the creative processes but cannot be planned for in advance. Freedom and transparency within the environment are other important factors that foster creative collaboration. The following findings are based on numerous courses, which we have taught using networked environments and some associated, research projects that helped to verify their applicability for architectural practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ff51
authors Neiman, Bennett R. and Do, Ellen Yi-Luen
year 1999
title Digital Media and the Language of Vision
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 70-80
doi https://doi.org/10.52842/conf.acadia.1999.070
summary Digital media are transforming the practice and teaching of design. Information technologies offer not only better production and rendering tools but also the ability to model, manipulate, and to understand designing in new ways. This paper outlines a thirteen-step methodology used in a seminar that teaches design students how to see, think, and form space using both digital and physical media.

The paper describes a systematic approach that follows the tradition of the Bauhaus principles of craftsmanship and visual perception. Precedents are drawn from the use of light, color and texture in the visual arts such as the glass collage assemblages of Albers and Moholy-Nagy’s camera-less photogram. References are also drawn from Kandinsky’s diagrammatic analysis of still life drawings and Kepes’s idea of the language of vision.

The focus of the paper is how digital media and physical material can be used interchangeably as instruments in a design environment. The investigation centers on developing teaching methods for seeing, thinking and making of spatial design. A sequence of experimental exercises stimulates students’ intuition and powers of analytical observation. This systematic approach helps students explore how space can be perceived and informed by using types of media that are significantly different in their nature. The methodology explores the concerns and techniques of making and exploring space through the use of light, shadow, motion, color and transparency.

series ACADIA
email
last changed 2022/06/07 07:58

_id c05b
authors Senagala, M.
year 1999
title An Epistemological and Systems Approach to Digital Technology Integration in Architectural Curriculum
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 16-26
doi https://doi.org/10.52842/conf.acadia.1999.016
summary Architectural institutions around the world have been faced with the question of digital technology integration for the last one decade. Numerous attempts have been made by those institutions to utilize and harness the new technology by trial and error methods. Although much has been said and done about the computer as a tool and a medium, there is a great paucity of well-considered and holistic theoretical frameworks that have been successfully applied in architectural curricula. The emergence of digital technology as an environment and as an overarching system has NOT been a much understood or acknowledged fact. This lack of systemic wisdom, in the digital technology integration process, is always punished by the system. In this paper, I intend to 1.) Outline the epistemological, philosophical, pedagogical and operational issues of digital technology integration efforts undertaken at Kansas State University. 2.) Meditate a systemic and holistic framework of principles, paradigms, proposals and strategies from a systems point of view that could be applied at other educational institutions. In contradistinction to the analytical, hierarchical and prosthetic approaches frequently adapted by the architectural institutions, I propose a systems approach and an ecological paradigm to understand and comprehensively integrate digital technology with architectural curricula. While many of the ideas brought under the framework may not be new, the framework itself is a new proposition. The framework draws heavily from Jean-François Lyotard’s postmodern pedagogical work, Deleuze and Guattari’s post-structural notions of “rhizome”, and Gregory Bateson’s expositions of ecological and systems approach.
series ACADIA
email
last changed 2022/06/07 07:56

_id c056
authors Tsou, Jin-Yeu and Chow, Benny
year 1999
title Team Orientated Knowledge Construction for Architectural Education
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 292-300
doi https://doi.org/10.52842/conf.ecaade.1999.292
summary Information Technology is always more accessible when we trying to imagine what the IT could be actually used. This situation is even more noticeable in the architecture field, and there are various technologies that have failed on delivering urgent needed education quality. Meanwhile, the tradition architecture education is evolving rapidly under the concepts of problem-based approach, knowledge reconstruction, and self-guided learning. "Education without institutional boundary" happens everyday in the classroom, and multi-direction learning modes have replaced the traditional single-direction teaching approach. The role of IT in the curriculum of architectural design education has become a subject of debate, scrutiny and experimentation in architectural schools. This paper will first outline the theory of applying team-oriented knowledge construction approach into studio teaching, the setup of our integrated digital design media environment is introduced; organization issue regarding the team formation and studio coordination is discussed; case studies are illustrated for demonstrating the methodology applied; and the student feedback is summarized to analysis the effectiveness of the approach.
keywords Multimedia, CD-ROM, Problem-Based Learning, Team-Orientated Learning, Constructivist Learning
series eCAADe
email
last changed 2022/06/07 07:57

_id add2
authors Won, Peng-Whai
year 1999
title The Comparison between Visual Thinking Using Computer and Conventional Media in the Concept Generation Stages of Design
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 363-372
doi https://doi.org/10.52842/conf.caadria.1999.363
summary Computer, this new kind of media, has influenced the behavior of design to some degree. Among these years, many researches have appeared for the development of computer-aided design. In recent years, such kind of computer-aided studies about the forepart of design, that is the stage of concept generation, have also started to generate. But most of these researches belonged to the kind of applied studies with the test of computer systems. On the other hand, there were many researches about the visual thinking and cognitive behavior of designers while sketching or drawing in the stage of concept generation. From the synthesis of the fore two disciplines, we can find that there existing a point of deficiency, that is the cognitive research about designers using computers as the sketching media is absent. And that is what I want to study and discuss in this research. The fundamental analytic data of this research is the visual process chronicled form the sketching of subjects, and the assistant analytic data is the verbal data from the questions that the subjects are asked after his/her sketching. These data is analyzed by three coding schema. The cognitive appearance while designers generating concepts with computers or conventional media are propounded and discussed in this research.
series CAADRIA
last changed 2022/06/07 07:57

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id de50
authors Combes, Leonardo and Barrionuevo, Luis F.
year 1999
title Distribución Espacial de Elementos Arquitectónicos (Space Distribution of Architectural Elements)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 130-133
summary This paper treats of the management of the position of objects on the plane. At first sight problems related with planning objects on the plane appear to be quite trivial. Nevertheless a system able to manage the permutation of objects the one with respect to the others becomes a complex one when all the possible variations are taken into account. The operations to be performed include topological variations in a combinatorial process. Although the results of such a system could be of general design application in this paper only architectural problems are examined as examples. In the first part an outline of the system is presented. In the second part a computer program directed to produce graphical results is described together with some case studies.
series SIGRADI
email
last changed 2016/03/10 09:49

_id 9e26
authors Do, Ellen Yi-Luen,
year 1999
title The right tool at the right time : investigation of freehand drawing as an interface to knowledge based design tools
source College of Architecture, Georgia Institute of Technology
summary Designers use different symbols and configurations in their drawings to explore alternatives and to communicate with each other. For example, when thinking about spatial arrangements, they draw bubble diagrams; when thinking about natural lighting, they draw a sun symbol and light rays. Given the connection between drawings and thinking, one should be able infer design intentions from a drawing and ultimately use such inferences to program a computer to understand our drawings. This dissertation reports findings from empirical studies on drawings and explores the possibility of using the computer to automatically infer designer's concerns from the drawings a designer makes. This dissertation consists of three parts: 1) a literature review of design studies, cognitive studies of drawing and computational sketch systems, and a set of pilot projects; 2) empirical studies of diagramming design intentions and a design drawing experiment; and 3) the implementation of a prototype system called Right-Tool-Right-Time. The main goal is to find out what is in design drawings that a computer program should be able to recognize and support. Experiments were conducted to study the relation between drawing conventions and the design tasks with which they are associated. It was found from the experiments that designers use certain symbols and configurations when thinking about certain design concerns. When thinking about allocating objects or spaces with a required dimensions, designers wrote down numbers beside the drawing to reason xviii about size and to calculate dimensions. When thinking about visual analysis, designers drew sight lines from a view point on a floor plan. Based on the recognition that it is possible to associate symbols and spatial arrangements in a drawing with a designer's intention, or task context, the second goal is to find out whether a computer can be programed to recognize these drawing conventions. Given an inferred intention and context, a program should be able to activate appropriate design tools automatically. For example, concerns about visual analysis can activate a visual simulation program, and number calculations can activate a calculator. The Right- Tool-Right-Time prototype program demonstrates how a freehand sketching system that infers intentions would support the automatic activation of different design tools based on a designers' drawing acts.
series thesis:PhD
email
more http://www.arch.gatech.edu/~ellen/thesis.html
last changed 2004/10/04 07:49

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
doi https://doi.org/10.52842/conf.ecaade.1999.374
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_464796 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002