CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 596

_id ga9912
id ga9912
authors Loocke, Philip Van
year 1999
title The art of growth and the solution of cognitive problems
source International Conference on Generative Art
summary A cellular method is proposed as an alternative for a connectionist approach. The present method does not use connections between cells, but introduces a field concept instead. If the fields are determined in accordance with the transformations familiar from fractal theory, then the solutions of problems that have some symmetry are forms of remarkable beauty. This way, a link is proposed between generative art and problem solving. It is conjectured that the ‘black box’ nature of connectionist systems can be replaced by an approach in which the solution of a problem coincides with a vivid visualization, also if the problems at hand are of a high-dimensional nature.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0b90
authors Serrentino, Roberto
year 1999
title Modular Architectural Groupings from Escher Periodic Tessellations
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 205-219
summary One of the more interesting design techniques developed by Dutch graphic artist M.C. Escher consists in covering the plane with tiles containing patterns that repeats periodically. Modularity within shape grouping is extensively used, expressed by natural figures from the living world, and also from worlds of fantasy. This paper attempts to use Eschers's ideas as a source of inspiration to obtain modular shapes to conform groups with architectural issues. The task is to satisfy design requirements and to get repeatable unitary shapes, whose geometric description is modularly manipulated within area as well as perimeter. This should be done by two procedures: 1. from the components to the whole (from the tiles to the tiling): once the designer has defined a modular constructive unit (solving a particular situation), it is possible to repeat the unit to generate modular groups, knowing that they will fit perfectly among them, without gaps nor overlaps. 2. from the whole to the components (from the tiling to the tiles): defining a tessellation with the particular rules that drives close to the architectural solution, and getting the necessary units from the tiling. There are multiple architectural themes on which this should be performed. School class-rooms, habitation buildings, shopping center sites, hotel rooms, are examples of this statement. Analyzing procedures followed by the artist, particularly those using figures that tessellate the plane periodically, we'll be able to generate tiles with architectural shape by the same way, applying different symmetry rules. Once the rules to generate shapes of tiles are known, we work within area and perimeter to satisfy modularity requirements and to convert the tiling as a geometric precise support for the insertion of architectural objects that follow predetermined dimensional patterns. In order to illustrate these ideas an example of grouping repeatable habitation units is presented.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ae61
authors Af Klercker, Jonas
year 1999
title CAAD - Integrated with the First Steps into Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.266
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 266-272
summary How and when should CAAD be introduced in the curriculum of the School of Architecture? This paper begins with some arguments for starting CAAD education at the very beginning. At the School of Architecture in Lund teachers in the first year courses have tried to integrate CAAD with the introduction to architectural concepts and techniques. Traditionally the first year is divided by several subjects running courses separatly without any contact for coordination. From the academic year 96/97 the teachers of Aplied aestetics, Building Science, Architectural design and CAAD have decided to colaborate as much as possible to make the role of our different fields as clear as possible to the students. Therefore integrating CAAD was a natural step in the academic year 98/99. The computer techniques were taught one step in advance so that the students can practise their understanding of the programs in their tasks in the other subjects. The results were surprisingly good! The students have quickly learned to mix the manual and computer techniques to make expressive and interesting visual presentations of their ideas. Some students with antipaty to computers have overcome this handicap. Some interesting observations are discussed.
keywords Curriculum, First Year Studies, Integration, CAAD, Modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id 4d95
authors Alvarado, Rodrigo Garcia and Maver, Tom
year 1999
title Virtual Reality in Architectural Education: Defining Possibilities
doi https://doi.org/10.52842/conf.acadia.1999.007
source ACADIA Quarterly, vol. 18, no. 4, pp. 7-9
summary Introduction: virtual reality in architecture Virtual Reality (VR) is an emergent computer technology for full 3D-simulations, which has a natural application in the architectural work, due that activity involves the complete definition of buildings prior to its construction. Although the profession has a long tradition and expertise in the use of 2D-plans for the design of buildings, the increasing complexity of projects and social participation requires better media of representation. However, the technological promise of Virtual Reality involves many sophisticated software and hardware developments. It is based on techniques of 3D-modelling currently incorporated in the majority of drawing software used in architecture, and also there are several tools for rendering, animation and panoramic views, which provide visual realism. But other capabilities like interactivity and sense of immersion are still complex, expensive and under research. These require stereoscopic helmets, 3D pointers and trackers with complicated configurations and uncomfortable use. Most advanced installations of Virtual-Reality like CAVEs involve much hardware, building space and restrictions for users. Nevertheless, diverse developers are working in Virtual-Reality user-friendly techniques and there are many initial experiences of architectural walk-throughs showing advantages in the communication and development of designs. Then we may expect an increasing use of Virtual Reality in architecture.
series ACADIA
email
last changed 2022/06/07 07:54

_id 93a8
authors Anders, P.
year 1999
title Envisioning Cyberspace: Designing 3D Electronic Spaces
source McGraw-Hill, NY
summary Free of the constraints of physical form and limited only by imagination, new environments spring to life daily in a fantastic realm called cyberspace. The creators of this new virtual world may be programmers, designers, architects, even children. In this invigorating exploration of the juncture between cyberspace and the physical world, architect Peter Anders brings together leading-edge cyberspace art and architecture ... inspiring new techniques and technologies ... unexpected unions of reality and virtuality ... and visions of challenges and opportunities as yet unexplored. More than an invitation to tour fantastic realms and examine powerful tools, this book is a hard-eyed look at cyberspace's impact on physical, cultural, and social reality, and the human-centered principles of its design. This is a book that will set designers and architects thinkingNand a work of importance to anyone fascinated with the fast-closing space between the real and the virtual.
series other
email
last changed 2003/04/23 15:14

_id becb
authors Anders, Peter
year 1999
title Electronic Extension: Some implications of cyberspace for the practice of architecture
doi https://doi.org/10.52842/conf.acadia.1999.276
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 276-289
summary This white-paper builds upon previous research to present hybrids of electronic and physical spaces as extensions of current design practice. It poses an hypothetical project - a hybrid of physical and cyberspaces - to be developed through an extrapolation of current architectural practice by fully exploiting new information technologies. The hybrid's attributes not only affect the scope of development but the very activities of the design team and client during - and after - deployment. The entire life cycle of the project is affected by its dual material and media presence. The paper concludes by discussing the effect the hybrid - here called a "cybrid" - on the occupant, and its local and global communities. It reviews the economics, administration, marketing, operation, flexibility, and extension of the project to assess its effects on these scales. The conclusions are provisional owing to the youth of the technologies. However, in laying out these issues, the author hopes to begin a discussion on effects computation will have on our built environment.
series ACADIA
email
last changed 2022/06/07 07:54

_id 2c4a
authors Aroztegui, Carmen
year 1999
title The Architect's Use of the Internet - Study of the Architectural Presentation Possibilities
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 363-368
summary The Internet media is opening new horizons in communication and representation in architecture. However, its use today is superficial, limited, and without creativity. This study will explore theories, methods and examples of how the virtual space of the Internet can be used in its full potential. That means to present ways of observing, understanding, interacting, and communicating the space without precedents in architecture. The existent presentations made by architects in the Internet are in general poor and static. Through the comparative analysis of two presentations of the same architectural space in the Internet and the use of state of the art technology in the Internet, this study will show innovations that will make the exploration of the architectural space more attractive, dynamic and interactive. The main issues will be on one hand, the improvement in the communication of the design through the use of the Internet, and on the other hand, the rise of the standards in the quality of the architectural presentations. This work will project possible implications of the Internet in architecture.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 89bb
authors Ataman, Osman and Richey, Thomas
year 1999
title ArchiDATA: A Hypermedia Tool for Architecture
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 496-500
summary Design is a cooperative activity at several levels. At one level, clients, architects, financiers, and construction engineers and contractors, all play important roles in creating the design for the building. At another level, the design team may contain architects, interior and landscape designers, lighting experts, heating, ventilation, and air-conditioning experts, etc. At a third level, individual architects cooperate with computer-based design tools in creating portions of a complex design. This paper describes an ongoing project called ArchiDATA, in which we are developing a computational Case-Based Design Aid (CBDA) for architectural design. This project, which is collaboration between cognitive scientists and architectural researchers, builds on an artificial intelligence paradigm called case-based reasoning and work in post-occupancy evaluation and other case study research in architecture.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 8171
authors Ataman, Osman
year 1999
title Facilitating Conceptual Change: Computers, Cognitive Processes and Architecture
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 275-279
summary Computers have gained universal acceptance as tools that designers use. However, computers are often not used to advance the design process but just to make drawings. Many architectural schools still focus on a production orientation which puts the highest value on information management, precise representations and drafting enhancements. Mostly, computer education is limited with button pushing and training manuals. It is the contention of the author that students in Design Studio courses can benefit greatly from computer based educational pedagogy designed to provide them with experiences they currently do not possess. In particular, little time in the computer courses (outside lectures) is spent applying concepts and features of digital tools in design studio environment. In architecture, computers cannot be simply defined as a presentation and production tools. As a cognitive tool, computers provide designers with intelligible and effective representational tools of thought and communication, changes the syntactic structure of design. Consequently, the conceptual structure of computers impacts the conceptual structure of the design project, fosters the analytical processes and facilitates conceptual changes. This paper describes the use of computers in a first year architectural design studio. It attempts to address the importance of developing a design process that is redefined by the use of computing, integrating concept and perception. Furthermore, it describes the theoretical foundations and the underlying cognitive processes that contribute designers' conceptual development.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 7ccd
authors Augenbroe, Godfried and Eastman, Chuck
year 1999
title Computers in Building: Proceedings of the CAADfutures '99 Conference
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, 398 p.
summary This is the eight CAADfutures Conference. Each of these bi-annual conferences identifies the state of the art in computer application in architecture. Together, the series provides a good record of the evolving state of research in this area over the last fourteen years. Early conferences, for example, addressed project work, either for real construction or done in academic studios, that approached the teaching or use of CAD tools in innovative ways. By the early 1990s, such project-based examples of CAD use disappeared from the conferences, as this area was no longer considered a research contribution. Computer-based design has become a basic way of doing business. This conference is marked by a similar evolutionary change. More papers were submitted about Web- based applications than about any other area. Rather than having multiple sessions on Web-based applications and communications, we instead came to the conclusion that the Web now is an integral part of digital computing, as are CAD applications. Using the conference as a sample, Web-based projects have been integrated into most research areas. This does not mean that the application of the Web is not a research area, but rather that the Web itself is an integral tool in almost all areas of CAAD research.
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 21c8
authors Bargiela, Beatriz and Bausset, Raúl Abad
year 1999
title Sistemas multimediales aplicados a la arquitectura y su conocimiento (Multimedia Systems Applied to Architecture and its Knowledge Base)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 186-191
summary This text makes a careful description of a great part of the components of the vocabulary of architecture and their syntax. It's structured in two parts, one textual and the other graphic. Due to the acknowledged contribution of the author on the subject of description of vocabulary of the elements of architecture and the research and development works that are entered upon in the master in computer graphics in the informatic field, it was proposed the development of an interactive system that allowed by means of links to connect the different parts of text and their respective graphics. Having as a basis the idiomatic equivalent term in Spanish and English, carried out in another research work, it was considered the possibility to link the text in these two languages besides the original one, french. That's why we've decided to propose the navigation through numeric text and images. This navigation has been already inferred from the reading of the text as intended from the author's that was why our task has been the interpretation of this intention and its translation in an informatic system. The product presented in this work is limited to having designed a methodology and showing its performance with some terms and images, able to make evident the sketch of our idea. The work is made out of the description of the following phases: 1.) Design of its interface; 2.) Compilation and classification of images compilation and classification of text; 3.) Coordination of textual and graphic elements; 4.) Programming of events in the interactive system.
series SIGRADI
email
last changed 2016/03/10 09:47

_id bd21
authors Barría Chateau, H., García Alvarado, R., Lagos Vergara, R. and Parra Márquez, J.C.
year 1999
title Evaluation of Spatial Perception in Virtual Environments
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 145-148
summary The 3D environments created by computers can be used as a powerful simulation tool for architecture, especially with inmersive devices, but it is necessary to know properly their spatial characteristics to use it effectively. It is also important to consider their possibilities in communication networks and their implications in contemporary architecture. For this reason, the goal of this research is to evaluate the perception of virtual architectonic spaces in relation to the perception of real architectonic spaces. This research is based on the comparison of experiences of university students in a real space (Entrance Hall of Faculty of Economy) and in the same space modeled by a computer. The evaluation considers tests with stereoscopic helmets and interactive navigation, making questionnaires to characterize the sensation of dimensions, relationships and time for an specific activity. The measuring of real and virtual spaces are made through references (furniture, textures, etc.) or by proportional relations between height, width and depth, in different patterns. The experience also reveals mental schemes to perceive the dimension of architectonic space and the orientation in a real and virtual environment. Besides, the research allows to relate the different levels of complexity and information with the understanding of real architectonic space and modeled space.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 7436
authors Barría Chateau, H., Muñoz Viveros, C. and Cerda Brintrup, G.
year 1999
title Virtual Tour Through Modern Architecture in Conception
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 475-477
summary This paper describes the development of a project that was selected and sponsoured by the Regional Competition FONDART 1998 (Funds for the Development of Arts of the Regional Secretary of Education) that follows the aim of cultural diffusion. Towards the middle of the 30s, the city of Concepción developed an architecture distinctly colonial, neoclassical and eclectic. An earthquake in 1939 abruptly interrupted this scene, destroying the enterity of its most important buildings. The reconstruction of the city followed the manifestoes of Modern Architecture, consolidating the urban importance of buildings such us the Law Courts, the Railway Station and the Regional Government, that emerged as the new architectural and cultural heritage of the city. The project consisted on the modeling of eleven buildings of the modern architectural heritage, and on the generation of 42 virtual tours through the buildings that were finally edited on a 16' video. This video allows the spectator to make a virtual tour through the original modern heritage of the city, nowadays demolished, altered, and sometimes, even forgotten. This project pretends to widen the ways of comprehension of our cultural identity by using computer modelling and animation as a tool for the conservation of the architectural heritage; and creating a record that can be used as a reference and as an instrument of cultural difussion.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecc5
authors Bassanino, May Nahab
year 1999
title The perception of computer generated architectural images
source Liverpool University
summary The broad aim of the research is to examine the role of computer generated architectural images on the way different people perceive architecture, and within this field of interest I have established a list of specific tasks to define the specific points of interest to examine. The following list of the main research objectives served as a guide in designing the experimental tests undertaken as part of this research: (*) Study the effect of both representation techniques and the used media on perceiving architecture. (*) Establish the differences (if there are any) of perception between different groups of people; principally architects and non-architects, but also subsets of each of these two groups. (*) To suggest the appropriate technique for presenting architecture for a particular group in a particular stage in the design process. (*) To investigate the influence of CAAD in architectural education on the students’ perception for architectural images.
series thesis:PhD
last changed 2003/11/21 15:16

_id 328d
authors Bassanino, May Nahab and Brown, Andre
year 1999
title Computer Generated Architectural Images: A Comparative Study
doi https://doi.org/10.52842/conf.ecaade.1999.552
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 552-556
summary This work is part of a long term research programme (Brown and Horton, 1992; Brown and Nahab, 1996; Bassanino, 1999) in which tests and studies have been carried out on various groups of people to investigate their reaction to, and interpretation of different forms of architectural representation. In the work described here a range of architectural schemes were presented using particular representational techniques and media. An experiment was then undertaken on two different groups; architects and lay people. They were presented with a number of schemes displayed using the various techniques and media. The responses are summarised and some comments are made on the effect of computers on perceiving architecture and on communicating architectural ideas arising from an analysis of the responses.
keywords Subject, Image Type, Presentation Technique, Medium, SD Scales, Factors
series eCAADe
email
last changed 2022/06/07 07:54

_id 7da7
authors Benedetti, Cristina and Salvioni, Giulio
year 1999
title The Use of Renewable Resource in Architecture: New Teaching Methodologies
doi https://doi.org/10.52842/conf.ecaade.1999.751
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 751-756
summary The program is organized into four parts. Each is very much connected, both logically and methodologically, so that the unit as a whole consists of a content and method of access that are not divided up. This method is not in a chronological order that simply goes in one direction, rather it allows the user to "refer back", in real time and in different directions. For the simple purpose of explanation, the sections of the program are listed as follows: (-) "Basic information" concerns the basics of bioclimatic and timber architecture. Without this knowledge, the other two sections would be difficult to understand; (-) "Actual buildings throughout the world"; give examples of architectural quality; they concretize the basics of bioclimatic and timber architecture; (-) "Students' Masters Theses", that follow on from the basic information and the learning experience "in the field", and guided by the lecturer, have a critical approach to actual buildings throughout the world. (-) A multimedia data-sheet organized to ensure a clear and straightforward presentation of information about the construction products. It relies on a tab-based navigation interface that gives users access to eight different stacked windows.
keywords Architecture, Multimedia, Timber, Bioclimatic, Classification
series eCAADe
email
last changed 2022/06/07 07:54

_id bfc2
authors Bessone, Miriam and Mantovani, Graciela
year 1999
title Integración del Medio Digital a la Enseñanza del Diseño Arquitectónico. Huellas de un Taller Experimental (Integration of Digital Media in the Teaching of Architectural Design. Tracks of an Experimental Studio)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 289-294
summary This paper presents the searching of new building modes for the knowledge of design in curriculum workshops at Facultad de Arquitectura, Diseno y Urbanismo of the Universidad Nacional del Litoral the proposed “research action” program articulates longitudinally in the three cycles of the career, understanding architecture as metaknowledge within a new paradigm of subjectivity, complexity and multidimensionality. In other words, it is recognized a new scenery tending to modify didactic relations. This experimental field looks for conscientious equilibrium between “written culture/audiovisual culture”, and “analog instruments/digital media”. We focus our interest on the “machine interacting with and for men”, looking for harmonious synthesis through a new way of thinking, to allow “real progress”. For turning this idea into action, we organized an alternative and plural team-work in architecture. We called it “experimental workshop”. In this first level the students worked. On a preliminary plan of a “kindergarden”. They developed a divergent process through the 3D simulations (using the software 3DS MAX v2), scale models and sensible sketches. For conclusions, the paper addresses the characteristics of the pedagogic model used and the results achieved.
series SIGRADI
email
last changed 2016/03/10 09:47

_id bbb9
authors Blaise, Jean-Yves and Dudek, Iwona
year 1999
title SOL: Spatial and Historical Web-Based Interface for On Line Architectural Documentation of Krakow's Rynek Gowny
doi https://doi.org/10.52842/conf.ecaade.1999.700
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 700-707
summary Our paper presents recent developments of a co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France), specialised in computer science and the HAiKZ Institute of Krakow's Faculty of Architecture, specialised in architectural heritage and conservation. Before undertaking any action to a listed building or interventions in its neighbourhood, it is vital to gain a clear understanding of the building in question. Numerous heterogeneous data detained by diverse institutions has to be handled. This process can be greatly eased by enhanced classification of the information. The development we present is a multidisciplinary platform independent information tool dedicated to education and research. SOL uses an http protocol centred computer architecture connecting a relational database, a VRML 2.0 representation module and a web search interface. It allows searches and updating of the database through a standard text based interface, a VRML 2.0 graphical module and a thematic interface. SOL is experienced on the urban fabric of the Main Square (Rynek Gówny) in Kraków. The choice of a web-centred development, both in the search and updating interface and in the representation module provides platform independence and distant access to the database, and enables successive contributions of students or researchers.
keywords Web Interface, Database, Architectural Heritage Environment, Information Module, Historical Evolutions
series eCAADe
email
more http://alberti.gamsau.archi.fr
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_306252 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002