CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 628

_id f154
authors Amor, Robert and Newnham, Leonard
year 1999
title CAD Interfaces to the ARROW Manufactured Product Server
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 1-11
summary The UK national project ARROW (Advanced Reusable Reliable Objects Warehouse) provides an Internet based framework through which it is possible to identify any of a range of manufactured products meeting specific design criteria. This open framework (based upon the IAI's IFCs) provides a mechanism for users to search for products from any participating manufacturer or supplier based both on specific attributes of a product or on any of the textual descriptions of the product. The service returns the closest matching products and allows the user to navigate to related information including manufacturer, suppliers, CAD details, VR displays, installation instructions, certificates, health and safety information, promotional information, costings, etc. ARROW also provides a toolkit to enable manufacturers and suppliers to more easily map and publish their information in the format utilised by the ARROW system. As part of the ARROW project we have examined the ability to interface from a design tool through to ARROW to automatically retrieve information required by the tool. This paper describes the API developed to allow CAD and simulation tools to communicate directly with ARROW and identify appropriate manufactured information. The demonstration system enables CAD systems to identify the closest matching manufactured product to a designed product and replacing the designed product with the details supplied by the manufacturer for the manufactured product as well as pulling through product attributes utilised by the design application. This paper provides a description of the ARROW framework and issues faced in providing information based upon standards as well as containing information not currently modelled in public standards. The paper looks at issues of enabling manufacturers and suppliers to move from their current world-view of product information to a more data-rich and user accessible information repository (even though this enables a uniform comparison across a range of manufacturer's products). Finally the paper comments on the likely way forward for ARROW like systems in providing quality information to end users.
keywords Computer-aided Design, Product Retrieval
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f11d
authors Brown, K. and Petersen, D.
year 1999
title Ready-to-Run Java 3D
source Wiley Computer Publishing
summary Written for the intermediate Java programmer and Web site designer, Ready-to-Run Java 3D provides sample Java applets and code using Sun's new Java 3D API. This book provides a worthy jump-start for Java 3D that goes well beyond the documentation provided by Sun. Coverage includes downloading the Java 2 plug-in (needed by Java 3D) and basic Java 3D classes for storing shapes, matrices, and scenes. A listing of all Java 3D classes shows off its considerable richness. Generally, this book tries to cover basic 3D concepts and how they are implemented in Java 3D. (It assumes a certain knowledge of math, particularly with matrices, which are a staple of 3D graphics). Well-commented source code is printed throughout (though there is little additional commentary). An applet for orbiting planets provides an entertaining demonstration of transforming objects onscreen. You'll learn to add processing for fog effects and texture mapping and get material on 3D sound effects and several public domain tools for working with 3D artwork (including converting VRML [Virtual Reality Markup Language] files for use with Java 3D). In all, this book largely succeeds at being accessible for HTML designers while being useful to Java programmers. With Java 3D, Sun is betting that 3D graphics shouldn't require a degree in computer science. This book reflects that philosophy, though advanced Java developers will probably want more detail on this exciting new graphics package. --Richard Dragan Topics covered: Individual applets for morphing, translation, rotation, and scaling; support for light and transparency; adding motion and interaction to 3D objects (with Java 3D classes for behaviors and interpolators); and Java 3D classes used for event handling.
series other
last changed 2003/04/23 15:14

_id 69f5
authors Chan, C., Maves, J. and Cruz-Neira, C.
year 1999
title An Electronic Library for Teaching Architectural History
doi https://doi.org/10.52842/conf.caadria.1999.335
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 335-344
summary This research project developed an electronic library of significant buildings chosen to represent seven selected periods of Western architectural history: Egyptian (Mortuary temple of Queen Hatshepsut), Greek (Parthenon), Roman (Pantheon), Romanesque (Speyer Cathedral), Gothic (Notre Dame Cathedral), Renaissance (Tempietto), and Modern (Des Moines Art Center). All buildings were reconstructed in their original or intended forms based on plans, drawings, photographs, and historical texts. Two products were generated by this project: (1) materials to be displayed on the World Wide Web, including rendered still images for perception, movies for a visual guide, and Virtual Reality Modeling Language (VRML) models for user navigation; and (2) virtual reality (VR) models to be displayed in the C2 (an improved version of the Cave Automatic Virtual Environment or CAVE facility). The benefits of these VR models displayed on the Web and in the C2 are their easy accessibility at any time from various geographic locations and the immersive experience that enhances viewersÌ understanding of the effects of spatial proportions on form and of colors on materials.
series CAADRIA
more http://archvr.design.iastate.edu/miller
last changed 2022/06/07 07:56

_id ga9920
id ga9920
authors Daru, Roel
year 1999
title Hunting Design Memes in the Architectural Studio, student projects as a source of memetic analysis
source International Conference on Generative Art
summary The current practice in design programming is to generate forms based on preconceptions of what architectural design is supposed to be. But to offer adequate morphogenetic programs for architectural design processes, we should identify the diversity of types of cultural replicators applied by a variety of architectural designers. In order to explore the variety of replicators actually used, around hundred 4th year architectural students were asked to analyse two or three of their own past design assignments. The students were invited to look for the occurrence of evolutionary design processes. They were requested to try and find some traces of 'transmission', 'variation' and 'selection' in their own design assignments. The paper will present an overview of their answers, the arguments applied and the diversity of the found types of verbal and visual design memes as cultural replicators. A discussion about the applicability of the found results in the genotypes and phenotypes of morphogenetic design software will conclude the presentation.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1ead
authors Dinand, Munevver Ozgur and Ozersay, Fevzi
year 1999
title CAAD Education under the Lens of Critical Communication Theories and Critical Pedagogy: Towards a Critical Computer Aided Architectural Design Education (CCAADE)
doi https://doi.org/10.52842/conf.ecaade.1999.086
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 86-93
summary Understanding the dominant ethos of our age is imperative but not easy. However it is quite evident that new technologies have altered our times. Every discipline is now forced to be critical in developing new concepts according to the realities of our times. Implementing a critical worldview and consciousness is now more essential than ever. Latest changes in information technology are creating pressure on change both in societal and cultural terms. With its direct relation to these technologies, computer aided architectural design education, is obviously an outstanding / prominent case within contemporary debate. This paper aims to name some critical points related to computer aided architectural design education (CAADE) from the perspective of critical communication studies and critical education theories. It tries to relate these three areas, by introducing their common concepts to each other. In this way, it hopes to open a path for a language of critique. A critique that supports and promotes experimentation, negotiation, creativity, social consciousness and active participation in architectural education in general, and CAADE in specific. It suggests that CAADE might become critical and produce meta-discourses [1 ] in two ways. Firstly, by being critical about the context it exists in, that is to say, its relationships to the existing institutional and social structures and secondly by being critical about the content it handles; in other words by questioning its ideological dimensions. This study considers that analysing the role of CAADE in this scheme can provide architectural education with the opportunity to make healthy projections for the future.
keywords Critical Theories, Critical Pedagogy, Critical CAADE
series eCAADe
email
last changed 2022/06/07 07:55

_id 5477
authors Donath, D., Kruijff, E., Regenbrecht, H., Hirschberg, U., Johnson, B., Kolarevic, B. and Wojtowicz, J.
year 1999
title Virtual Design Studio 1998 - A Place2Wait
doi https://doi.org/10.52842/conf.ecaade.1999.453
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 453-458
summary This article reports on the recent, geographically and temporally distributed, intercollegiate Virtual Design Studio based on the 1998 implementation Phase(x) environment. Students participating in this workshop had to create a place to wait in the form of a folly. This design task was cut in five logical parts, called phases. Every phase had to be finished within a specific timeframe (one day), after which the results would be stored in a common data repository, an online MSQL database environment which holds besides the presentations, consisting of text, 3D models and rendered images, basic project information like the descriptions of the phases and design process visualization tools. This approach to collaborative work is better known as memetic engineering and has successfully been used in several educational programs and past Virtual Design Studios. During the workshop, students made use of a variety of tools, including modeling tools (specifically Sculptor), video-conferencing software and rendering programs. The project distinguishes itself from previous Virtual Design Studios in leaving the design task more open, thereby focusing on the design process itself. From this perspective, this paper represents both a continuation of existing reports about previous Virtual Design Studios and a specific extension by the offered focus. Specific attention will be given at how the different collaborating parties dealt with the data flow and modification, the crux within a successful effort to cooperate on a common design task.
keywords Collaborative design, Design Process, New Media Usage, Global Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2015_188
id caadria2015_188
authors Krakhofer, Stefan and Martin Kaftan
year 2015
title Augmented Reality Design Decision Support Engine for the Early Building Design Stage
doi https://doi.org/10.52842/conf.caadria.2015.231
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 231-240
summary Augmented reality has come a long way and experienced a paradigm shift in 1999 when the ARToolKit was released as open source. The nature of interaction between the physical world and the virtual-world has changed forever. Fortunately for the AECO industry, the transition from traditional Computer Aided Design to virtual building design phrased as Building Information Modeling has created a tremendous potential to adopt Augmented Reality. The presented research is situated in the early design stage of project inception and focuses on supporting informed collective decision-making, characterized by a dynamic back and forth analytical process generating large amounts of data. Facilitation aspects, such as data-collection, storage and access to enable comparability and evaluation are crucial for collective decision-making. The current research has addressed these aspects by means of data accessibility, visualization and presentation. At the core of the project is a custom developed Augmented Reality framework that enables data interaction within the design model. In order to serve as a collaborative decision support engine, the framework also allows multiple models and their datasets to be displayed and exercised simultaneously. The paper demonstrates in the case study the successful application of the AR tool during collaborative design decision meetings.
keywords Augmented Reality; Design Decision Support; Data Visualization.
series CAADRIA
email
last changed 2022/06/07 07:51

_id b42b
authors Martinez, B.S., Fasce, A., Merlos, N. and Ortega, F.G.
year 1999
title Objeto, función y funcionamiento de la herramienta informática en las practicas proyectuales de los alumnos, aplicada a la generación de Diseño Textil. (Object, Function and Operation of Computer Tools in the practice of Design by students, applied to the generation of Textile Design)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 430-433
summary Continuing with our investigation of application of the computer tool in the generation of Textile Design is that we center this work on the query about which, because and like they are carried out you practice them of representation using systems CAD in the generation of Textile Design, on the part of the students and the meaning that these they attribute to the use of this digital tool. The investigation of happiness is practiced it centers this way from its linking with these as alternative of pedagogic intervention, framed in the implementation particularities of you practice them proyects in the shop of Textile Design, with the objective of Knowing and Tipificar the different representation alternatives for the carried out students. The elected methodology for the present investigation is the qualitative logic, inside an interpretation focus, to describe and to interpret the meanings that the students grant to the use of the computer tool in their exercises proyects. For the process of obtaining of data, was carried out a flowing and open work, of interviews and permanent selection where you drain the sample according to the saturation approaches that settled down during the course of the same one, the analysis type it allowed us the conceptual comparisons, associated to strategies, by means of which we obtained the excellent information that finally will be processed and restored to the group for, if it considers it to him pertinent, become use material in the future.
series SIGRADI
email
last changed 2016/03/10 09:55

_id cf49
authors Martínez, Javier Alberto
year 1999
title Potencialidades del SIG 3D y los Modelos Urbanos Interactivos (The Potential of the SIG 3D and the Interactive Urban Models)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 225-229
summary We are facing a constant growth in 3D GIS, and its interaction with CAD, VR and CG, influence each other more than ever. In this context, 3D urban models can interactively assist in any step of a decision making process. Urban planners can benefit from 3D urban models in a way never thought before. PC technology , free 3D interactive viewers and VRML offer low cost implementations. Data coming from cadastral updates in Argentina are an invaluable source of digital data and building height attributes are included on that. In that way, tabular or attribute data can be linked to 3D graphic data. Geographic Information Systems can add to these 3D urban models all the benefits of attribute data plus its spatial analysis capabilities. Queries of any kind, and links to hypertext, planning documents can enhance the information provided by this "virtual world". Finally, regarding communication aspects, Interactive design and decision making can be reached in a much easier way as 3D is better than 2D. If we consider that 3D urban models can easily be browsed in VRML we have then the enormous potential of collaborative design through internet and intranet.
series SIGRADI
email
last changed 2016/03/10 09:55

_id e6fb
authors McFadzean, Jeanette
year 1999
title Computational Sketch Analyser (CSA): Extending the Boundaries of Knowledge in CAAD
doi https://doi.org/10.52842/conf.ecaade.1999.503
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 503-510
summary This paper focuses on the cognitive problem-solving strategies of professional architectural designers and their use of external representations for the production of creative ideas. Using a new form of protocol analysis (Computational Sketch Analysis), the research has analysed five architects' verbal descriptions of their cognitive reasoning strategies during conceptual designing. It compares these descriptions to a computational analysis of the architects' sketches and sketching behaviour. The paper describes how the current research is establishing a comprehensive understanding of the mapping between conceptualisation, cognition, drawing, and complex problem solving. The paper proposes a new direction for Computer Aided Architectural Design tools (CAAD). It suggests that in order to extend the boundaries of knowledge in CAAD an understanding of the complex nature of architectural conceptual problem-solving needs to be incorporated into and supported by future conceptual design tools.
keywords Computational Sketch Analysis, Conceptual Design
series eCAADe
email
last changed 2022/06/07 07:58

_id 2c63
authors QaQish, Ra'Ed and Tarazi, Khaled
year 1999
title Formulating a Computer-Aided Architectural Design (CAAD) Program Model in Distance Education (DE) at Open Universities (OU)
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 189-204
summary This paper reports on a project that aims to formulate a CAAD program model in Distance Education (Learning/Teaching) framework, to be applied and implemented in future settings at Open Universities worldwide. The methodology used to establish the CAAD program model consisted of a worldwide literature review on the subject of Distance Education and Open Universities. It also involved an assessment of the methods and means used in the delivery of materials to students enrolled at Open Universities, together with an analysis of the current program of study and subject related courses. The methods of this investigation consisted of a comparative analysis between the existing models of teaching process at Open Universities and how it relates to CAAD in architecture schools. The study endeavored to examine several issues that were found to be key factors in any Open University system, namely: the methods of study, program of study, student type/body, academic/degree requirements, and residency/academic calendars. While attempting to establish a conceptual CAAD program model, this study investigated several questions concerning the efficiency of CAAD teaching in Distance Education. One of the study objectives was to determine which factors were mostly needed to effectively integrate CAAD in DE as a new program in Open Universities. In addition, how would these factors affect the design of CAAD courses in OU systems as a new DE program area? And what structural elements would be most affected by these factors? Another objective of this study was to determine to what extent the new CAAD program model in tandem with staff, learning environment, and administered materials would be effective in generating supplementary strategies in the virtual design studio. A third objective was to evaluate the personal computer station as an alternative design studio space in future settings of schools of architecture. Consequently, the principle objective of this study was to develop and establish a CAAD program model to be adopted by Open Universities as a new subject area in DE. Mainly, the study attempted to locate the areas where CAAD teaching excels in the context of virtual design studio of OU system.
series AVOCAAD
last changed 2005/09/09 10:48

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a291
authors Saboya, Renato and Santiago, Alina
year 1999
title A Construcao de um Sistema de Informacoes Geograficas para a Lagoa da Conceicao: Possibilidades e Desafios (The Construction of a Geographic Information System for the "Conceicao" Lagoon: Possibilities and Challenges)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 203-208
summary This work intends to present the construction process of a Geographic Information System – GIS, for the "Lagoa da Conceição", in Florianópolis city, which aims to map urban uses of this region of the Santa Catarina Island. The focus is placed over the following aspects: 1.) Adopted proceedings to avoid the difficulties placed by lack of actual cartographic data in large scales. This problem common to several Brazilian cities dictated the need of mixing several sources of information to construct a geographical data base; 2.) The analytic results already obtained in the actual investigation stage based on the elaborated thematic maps over urban uses, and more specifically over tourism uses. Deepening of these analysis with inclusion of new data, and its utilization as a tool to verify new territorial interventions are also explored; 3.) The spreading and utilization possibilities of the information generated by system by different social sectors through Intranet and Internet technologies. The use of the technologies open up new perspectives regarding the interaction between these sectors in the use of geografical information, giving way to the construction of an unique data basis which might favored integrated decision making process in diverse filds of knowledge.
keywords Geographic Information System, Territory Management Support
series SIGRADI
email
last changed 2016/03/10 09:59

_id dc01
authors Saleh Uddin, M.
year 1999
title Digital Architecture
source McGraw-Hill
summary Digital Architecture is the only guide that shows you how to create accomplished computer drawings by displaying and explaining the work of many of today's most justly celebrated design professionals. It gives you the foundation to understand how these international masters so deftly exploited computers, by providing a clear overview of the hardware, software, and input and output devices involved in digital media. It then showcases the conceptual studies, desktop formats, 3D renderings, digital hybrids, and animation of more than 50 top designers and firms. Each project comes with a succinct explanation of the design concept, drawing techniques, hardware and software used, and output media involved. Featuring an easy-to-use, loose-leaf format, Digital Architecture will be your ongoing reference on hybrid digital representation and an endless source of ideas and inspiration.
series other
last changed 2003/04/23 15:14

_id 5840
authors Sato, I., Sato, Y. and Ikeuchi, K.
year 1999
title Illumination distribution from brightness in shadows: adaptive estimation of illumination distribution with unknown reflectance properties in shadow regions
source Proceedings IEEE Conference on Computer Vision and Pattern Recognition 99, pp. 875-882, September 1999
summary This paper describes a new method for estimating the illumination distribution of a real scene from a radiance distribution inside shadows cast by an object in the scene. First, the illumination distribution of the scene is approximated by discrete sampling of an extended light source. Then the illumination distribution of the scene is estimated from a radiance distribution inside shadows cast by an object of known shape onto another object in the scene. Instead of assuming any particular reflectance properties of the surface inside the shadows, both the illumination distribution of the scene and the reflectance properties of the surface are estimated simultaneously, based on iterative optimization framework. In addition, this paper introduces an adaptive sampling of the illumination distribution of a scene. Rather than using a uniform discretization of the overall illumination distribution, we adaptively increase sampling directions of the illumination distribution based on the estimation at the previous iteration. Using the adaptive sampling framework, we are able to estimate overall illumination more efficiently by using fewer sampling directions. The proposed method is effective for estimating an illumination distribution even under a complex illumination environment.
series other
last changed 2003/04/23 15:50

_id 3d23
authors Sellgren, Ulf
year 1999
title Simulation-driven Design
source KTH Stockholm
summary Efficiency and innovative problem solving are contradictory requirements for product development (PD), and both requirements must be satisfied in companies that strive to remain or to become competitive. Efficiency is strongly related to ”doing things right”, whereas innovative problem solving and creativity is focused on ”doing the right things”. Engineering design, which is a sub-process within PD, can be viewed as problem solving or a decision-making process. New technologies in computer science and new software tools open the way to new approaches for the solution of mechanical problems. Product data management (PDM) technology and tools can enable concurrent engineering (CE) by managing the formal product data, the relations between the individual data objects, and their relation to the PD process. Many engineering activities deal with the relation between behavior and shape. Modern CAD systems are highly productive tools for concept embodiment and detailing. The finite element (FE) method is a general tool used to study the physical behavior of objects with arbitrary shapes. Since a modern CAD technology enables design modification and change, it can support the innovative dimension of engineering as well as the verification of physical properties and behavior. Concepts and detailed solutions have traditionally been evaluated and verified with physical testing. Numerical modeling and simulation is in many cases a far more time efficient method than testing to verify the properties of an artifact. Numerical modeling can also support the innovative dimension of problem solving by enabling parameter studies and observations of real and synthetic behavior. Simulation-driven design is defined as a design process where decisions related to the behavior and performance of the artifact are significantly supported by computer-based product modeling and simulation. A framework for product modeling, that is based on a modern CAD system with fully integrated FE modeling and simulation functionality provides the engineer with tools capable of supporting a number of engineering steps in all life-cycle phases of a product. Such a conceptual framework, that is based on a moderately coupled approach to integrate commercial PDM, CAD, and FE software, is presented. An object model and a supporting modular modeling methodology are also presented. Two industrial cases are used to illustrate the possibilities and some of the opportunities given by simulation-driven design with the presented methodology and framework.
keywords CAE; FE Method; Metamodel; Object Model; PDM; Physical Behavior, System
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 0b90
authors Serrentino, Roberto
year 1999
title Modular Architectural Groupings from Escher Periodic Tessellations
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 205-219
summary One of the more interesting design techniques developed by Dutch graphic artist M.C. Escher consists in covering the plane with tiles containing patterns that repeats periodically. Modularity within shape grouping is extensively used, expressed by natural figures from the living world, and also from worlds of fantasy. This paper attempts to use Eschers's ideas as a source of inspiration to obtain modular shapes to conform groups with architectural issues. The task is to satisfy design requirements and to get repeatable unitary shapes, whose geometric description is modularly manipulated within area as well as perimeter. This should be done by two procedures: 1. from the components to the whole (from the tiles to the tiling): once the designer has defined a modular constructive unit (solving a particular situation), it is possible to repeat the unit to generate modular groups, knowing that they will fit perfectly among them, without gaps nor overlaps. 2. from the whole to the components (from the tiling to the tiles): defining a tessellation with the particular rules that drives close to the architectural solution, and getting the necessary units from the tiling. There are multiple architectural themes on which this should be performed. School class-rooms, habitation buildings, shopping center sites, hotel rooms, are examples of this statement. Analyzing procedures followed by the artist, particularly those using figures that tessellate the plane periodically, we'll be able to generate tiles with architectural shape by the same way, applying different symmetry rules. Once the rules to generate shapes of tiles are known, we work within area and perimeter to satisfy modularity requirements and to convert the tiling as a geometric precise support for the insertion of architectural objects that follow predetermined dimensional patterns. In order to illustrate these ideas an example of grouping repeatable habitation units is presented.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 732d
authors Uddin, M. Saleh
year 1999
title Digital Architecture
source McGraw-Hill, New York
summary Digital Architecture is the only guide that shows you how to create accomplished computer drawings by displaying and explaining the work of many of today's most justly celebrated design professionals. It gives you the foundation to understand how these international masters so deftly exploited computers, by providing a clear overview of the hardware, software, and input and output devices involved in digital media. It then showcases the conceptual studies, desktop formats, 3D renderings, digital hybrids, and animation of more than 50 top designers and firms. Each project comes with a succinct explanation of the design concept, drawing techniques, hardware and software used, and output media involved. Featuring an easy-to-use, loose-leaf format, Digital Architecture will be your ongoing reference on hybrid digital representation and an endless source of ideas and inspiration.
series other
last changed 2003/04/23 15:14

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_309496 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002