CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 631

_id ga9926
id ga9926
authors Antonini, Riccardo
year 1999
title Let's Improvise Together
source International Conference on Generative Art
summary The creators of ‘Let's-Improvise-Together’ adhere to the idea that while there is a multitude of online games now available in cyberspace, it appears that relatively few are focused on providing a positive, friendly and productive experience for the user. Producing this kind of experience is one the goals of our Amusement Project.To this end, the creation of ‘Let's Improvise Together’ has been guided by dedication to the importance of three themes:* the importance of cooperation,* the importance of creativity, and* the importance of emotion.Description of the GameThe avatar arrives in a certain area where there are many sound-blocks/objects. Or he may add sound "property" to existing ones. He can add new objects at will. Each object may represents a different sound, they do not have to though. The avatar walks around and chooses which objects he likes. Makes copies of these and add sounds or change the sounds on existing ones, then with all of the sound-blocks combined make his personalized "instrument". Now any player can make sounds on the instrument by approaching or bumping into a sound-block. The way that the avatar makes sounds on the instrument can vary. At the end of the improvising session, the ‘composition’ will be saved on the instrument site, along with the personalized instrument. In this way, each user of the Amusement Center will leave behind him a unique instrumental creation, that others who visit the Center later will be able to play on and listen to. The fully creative experience of making a new instrument can be obtained connecting to Active Worlds world ‘Amuse’ and ‘Amuse2’.Animated colorful sounding objects can be assembled by the user in the Virtual Environment as a sort of sounding instrument. We refrain here deliberately from using the word musical instrument, because the level of control we have on the sound in terms of rythm and melody, among other parameters, is very limited. It resembles instead, very closely, to the primitive instruments used by humans in some civilizations or to the experience made by children making sound out of ordinary objects. The dimension of cooperation is of paramount importance in the process of building and using the virtual sounding instrument. The instrument can be built on ones own effort but preferably by a team of cooperating users. The cooperation has as an important corolary: the sharing of the experience. The shared experience finds its permanence in the collective memory of the sounding instruments built. The sounding instrument can be seen also as a virtual sculpture, indeed this sculpture is a multimedial one. The objects have properties that ranges from video animation to sound to virtual physical properties like solidity. The role of the user representation in the Virtual World, called avatar, is important because it conveys, among other things, the user’s emotions. It is worth pointing out that the Avatar has no emotions on its own but it simply expresses the emotions of the user behind it. In a way it could be considered a sort of actor performing the script that the user gives it in real-time while playing.The other important element of the integration is related to the memory of the experience left by the user into the Virtual World. The new layout is explored and experienced. The layout is a permanent editable memory. The generative aspects of Let's improvise together are the following.The multi-media virtual sculpture left behind any participating avatar is not the creation of a single author/artist. The outcome of the sinergic interaction of various authors is not deterministic, nor predictable. The authors can indeed use generative algorythm in order to create the texture to be used on the objects. Usually, in our experience, the visitors of the Amuse worlds use shareware programs in order to generate their texture. In most cases the shareware programs are simple fractals generators. In principle, it is possible to generate also the shape of the object in a generative way. Taking into account the usual audience of our world, we expected visitors to use very simple algorythm that could generate shapes as .rwx files. Indeed, noone has attempted to do so insofar. As far as the music is concerned, the availability of shareware programs that allow simple generation of sounds sequences has made possible, for some users, to generate sounds sequences to be put in our world. In conclusion, the Let's improvise section of the Amuse worlds could be open for experimentation on generative art as a very simple entry point platform. We will be very happy to help anybody that for educational purposes would try to use our platform in order to create and exhibit generative forms of art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 411c
authors Ataman, Osman and Bermúdez (Ed.)
year 1999
title Media and Design Process [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.1999
source ACADIA ‘99 Proceedings / ISBN 1-880250-08-X / Salt Lake City 29-31 October 1999, 353 p.
summary Throughout known architectural history, representation, media and design have been recognized to have a close relationship. This relationship is inseparable; representation being a means for engaging in design thinking and making and this activity requiring media. Interpretations as to what exactly this relationship is or means have been subject to debate, disagreement and change along the ages. Whereas much has been said about the interactions between representation and design, little has been elaborated on the relationship between media and design. Perhaps, it is not until now, surrounded by all kinds of media at the turn of the millennium, as Johnson argues (1997), that we have enough context to be able to see and address the relationship between media and human activities with some degree of perspective.
series ACADIA
email
more http://www.acadia.org
last changed 2022/06/07 07:49

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 3db8
authors Clarke, Keith
year 1999
title Getting Started with GIS
source 2nd ed., Prentice Hall Series in Geographic Information Science, ed. Kieth Clarke. Upper Saddle River, NJ: Prentice Hall, 1999, 2-3
summary This best-selling non-technical, reader-friendly introduction to GIS makes the complexity of this rapidly growing high-tech field accessible to beginners. It uses a "learn-by-seeing" approach that features clear, simple explanations, an abundance of illustrations and photos, and generic practice labs for use with any GIS software. What Is a GIS? GIS's Roots in Cartography. Maps as Numbers. Getting the Map into the Computer. What Is Where? Why Is It There? Making Maps with GIS. How to Pick a GIS. GIS in Action. The Future of GIS. For anyone interested in a hands-on introduction to Geographic Information Systems.
series other
last changed 2003/04/23 15:14

_id 3ddc
authors Dijkstra, Jan and Timmermans, Harry
year 1999
title Towards a Multi-Agent Model for Visualizing Simulated User Behavior to Support the Assessment of Design Performance
doi https://doi.org/10.52842/conf.acadia.1999.226
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 226-237
summary We introduce the outline of a multi-agent model that can be used for visualizing simulated user behavior to support the assessment of design performance. We will consider various performance indicators of building environments, which are related to user reaction to design decisions. This system may serve as a media tool in the design process for a better understanding of what the design will look like, especially for those cases where design or planning decisions will affect the behavior of individuals. The system is based on cellular automata and multi-agent simulation technology. The system simulates how agents move around in a particular 3D (or 2D) environment, in which space is represented as a lattice of cells. Agents represent objects or people with their own behavior, moving over the network. Each agent will be located in a simulated space, based on the cellular automata grid. Each iteration of the simulation is based on a parallel update of the agents conforming local rules. Agents positioned within an environment will need sensors to perceive their local neighborhood and some means with which to affect the environment. In this way, autonomous individuals and the interaction between them can be simulated by the system. As a result, designers can use the system to assess the likely consequences of their design decisions on user behavior. We think that the system provides a potentially valuable tool to support design and decision-making processes, related to user behavior in architecture and urban planning.
series ACADIA
email
last changed 2022/06/07 07:55

_id 8313
authors Harrop, Patrick H.
year 1999
title Amor Infiniti/Horror Vacuii: Resolving Architecture Beyond the Planck Length ()
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 19-24
summary If one were to presume that every major shift in the perception and representational modes of architecture has its mirror in what is made, then we should be able to divine and critique the implications of making architecture through information technologies. We are only now beginning to enter speculations of what can possibly be made as a direct result of these systems. Already, the representation of digital space is undergoing a fundamental transition: From the highly precise facsimile of traditional Euclidean geometry, that we currently use in most CAD and modelling software to the visual interpretation of dense data arrays, as is emerging in GIS (Global Information Systems). This shift from a Vectorial world to a bitmap world is perhaps the most challenging to our historical and perhaps necessary assumption that Euclidean geometry , such as proportion and projection, is at the heart of making architecture. Does this shift imply an ultimately fatal divorce from the Vitruvian tradition of architecture through geometry or is it re-directing the interaction between computers and architecture into perhaps a more appropriate and creative realm of opportunity? This paper hopes to address these questions in the forum of a theoretical and historical discussion focused on the representation of architecture and making. Some current experimental digital work by the author will accompany this presentation and paper.
series SIGRADI
type normal paper
email
last changed 2016/03/10 09:53

_id 9f08
authors Hillis, K.
year 1999
title Digital Sensations: Space, Identity, and Embodiment in Virtual Reality
source University of Minnesota Press, Minneapolis, Minnesota
summary Virtual reality is in the news and in the movies, on TV and in the air. Why is the technology -- or the idea -- so prevalent precisely now? What does it mean -- what does it do -- to us? Digital Sensations looks closely at the ways representational forms generated by communication technologies -- especially digital/optical virtual technologies -- affect the "lived" world. Virtual reality, or VR, is a technological reproduction of the process of perceiving the real; yet that process is "filtered" through the social realities and embedded cultural assumptions about human bodies, perception, and space held by the technology's creators. Through critical histories of the technology -- of vision, light, space, and embodiment -- Ken Hillis traces the various and often contradictory intellectual and metaphysical impulses behind the Western transcendental wish to achieve an ever more perfect copy of the real. Because virtual technologies are new, these histories also address the often unintended and underconsidered consequences -- such as alienating new forms of surveillance and commodification -- flowing from their rapid dissemination. Current and proposed virtual technologies reflect a Western desire to escape the body Hillis says. Exploring topics from VR and other, earlier visual technologies, Hillis's penetrating perspective on the cultural power of place and space broadens our view of the interplay between social relations and technology.
series other
last changed 2003/04/23 15:14

_id ecb2
authors Kalay, Yehuda E.
year 1999
title The Future of CAAD: From Computer-Aided Design to Computer-Aided Collaboration
source Llavaneras S., Gustavo J. and Negrón P., Enssa (eds.), 1ra Conferencia Venezolana sobre Aplicación de Computadores en Arquitectura, Caracas (Venezuela) 1-3 december 1999, pp. 19-28
summary The primary uses of computers in the construction industry have been shifting, over the past four decades, from the evaluation of proposed design solutions, to their graphical (and other) representation, and more recently to facilitating collaboration among the various professionals who are involved in the design process. This paper argues that what may appear to be shifts in emphasis actually represents convergence on a single, original goal: the use of computers to help designers (and others who are involved in the design decision making process) to assess the quality, desirability, and the implications of their creations. Such assistance requires representation, communication, and analysis. The paper goes on to show how these individual parts can be joined into an integrated collaborative design environment, where they build upon and strengthen each other. Moreover, the paper argues that this convergence represents the future of CAAD research and development.
series other
email
last changed 2002/12/23 14:11

_id 170f
authors Mora Padrón, Víctor Manuel
year 1999
title Integration and Application of Technologies CAD in a Regional Reality - Methodological and Formative Experience in Industrial Design and Products Development
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 295-297
summary The experience to present is begun and developed during the academic year 1998, together to the course of IV pupils level of the Industrial Design career in the Universidad del Bío-Bío, labor that I have continued assuming during the present year, with a new youths generation. We have accomplished our academic work taking as original of study and base, the industrial and economic situation of the VIII Region, context in the one which we outline and we commit our needs formative as well as methodological to the teaching of the discipline of the Industrial Design. Consequently, we have defined a high-priority factor among pupils and teachers to reach the objectives and activities program of the course, the one which envisages first of all a commitment of attitude and integrative reflection among our academic activity and the territorial human context in the one which we inhabit. In Chile the activity of the industrial designer, his knowledge and by so much his capacity of producing innovation, it has been something practically unknown in the industrial productive area. However, the current national development challenges and the search by widening our markets, they have created and established a conscience of the fact that the Chilean industrial product must have a modern and effective competitiveness if wants be made participates in segments of the international marketing. It is in this new vision where the design provides in decisive form to consider and add a commercial and cultural value in our products. To the university corresponds the role of transmitting the knowledge generated in his classrooms toward the society, for thus to promote a development in the widest sense of the word. Under this prism the small and median regional industry in their various areas, have not integrated in the national arrangement in what concerns to the design and development of new and integral products. The design and the innovation as motor concept for a competitiveness and permanency in new markets, it has not entered yet in the entrepreneurial culture. If we want to save this situation, it is necessary that the regional entrepreneur knows the importance of the Design with new models development and examples of application, through concrete cases and with demands, that serve of base to demonstrate that the alliance among Designer and Industry, opens new perspectives of growth upon offering innovation and value added factors as new competitiveness tools. Today the communication and the managing of the information is a strategic weapon, to the moment of making changes in a social dynamics, so much at local level as global. It is with this look that our efforts and objective are centered in forming to our pupils with an integration speech and direct application toward the industrial community of our region, using the communication and the technological information as a tool validates and effective to solve the receipt in the visualization of our projects, designs and solutions of products. As complement to the development of the proposed topic will be exhibited a series of projects accomplished by the pupils for some regional industries, in which the three dimensional modeling and the use of programs vectoriales demonstrate the efficiency of communication and comprehension of the proposals, its complexity and constructive possibilities.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 6e9f
authors Muñoz, Patricia Laura and López Coronel, Juan
year 1999
title About the Need of Stopping in the Road: the Fruitful Pause in a Fertile Course
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 93-97
summary Our burdened end of the century seems to demand vertiginous progress, without pauses, frequently without even asking where this course leads. What is most important is to go further, is not to be left behind. In this view, computer science offers more alternatives in less time. However, its greatest risk is to make us covet more, without even trying to inquire what is its value or sense. After working in some researches on generation of forms, we were specially attracted by some of them. Instead of going further in the study of the new generative methods available, we decided to make a pause to look back at those forms we had already obtained. We decided to use computer instruments to understand more deeply forms that we apparently knew. This technology offered us the possibility of visualizing extraordinary forms, of exploring multiple series of curves hidden in their surface. By means of this work, we promote the need of making a pause in our work, in order to try to know intensively the object of our troubles and inquiries, giving it the indispensable time to enjoy it completely.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ga9927
id ga9927
authors Neagu, Mariana
year 1999
title On Linguistic Aspects from a Cross-cultural Perspective
source International Conference on Generative Art
summary The goal of this paper is to discuss the issue of culture and its relationship to language and cognition by dealing with a number of lexical concepts, grammatical concepts and cultural scripts. Taking a moderate view, I reconcile universalism and ethnocentrism and argue that the study of culture-specific aspects of language has both a theoretical and practical importance. The role of universal semantic primes is obvious in culture-specific words such as the Japanese amae (a peculiarly Japanese emotion) which, though unique and untranslatable, can be accurately and intelligibly defined in terms of semantic primes (Wierzbicka, 1996). The view that meanings cannot be fully transferred from one language to another is supported by the difference in meaning manifested in the different range of use of the word happy (a common, everyday word in modern English) and joyful (a more literally and stylistically marked term.). A cross-linguistic analysis of the concept ‘happy’in English, Romanian, German, French, Italian, points to the so-called ‘traditional Anglo-Saxon distate for extreme emotions’. As far as aspects of grammar connected with culture are concerned, I compare expressive grammatical devices like intensifiers in English, Romanian and Italian. The question the paper addresses is whether constructions like syntactic reduplication(e.g. bella bella) and the absolute superlative (e.g. bellissimo) are indeed linked with what has been called ‘the theatrical quality’ of Italian life (Barzini, 1964) or not. Relative to Romanian, I assume that the idea of intensity of a state or action is conveyed, in certain registers, by terms and expressions pertaining to basic element source domains such as fire (e.g. frumoasa foc ‘fire-beautiful’) and earth (e.g. frumusetea pamantului ‘beauty of the earth’) and also by syntactic reduplication (e.g. frumoasa-frumoaselor ’beauty of the beauties’). Finally, I approach aspects of pragmatics which are culturally determined in the sense that they express cultural norms, values, ideals, attitudes. For instance, preferences are expressed directly in English while in Japanese this manner is contrary to the ideal of enryo ’restraint, reserve’.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 29f3
authors Ohno, Ryuzo and Aoki, Hirofumi
year 1999
title Development of an Interactive Simulation System for Environment-Behavior Study
source Simulation of Architectural Space - Color and Light, Methods and Effects [Proceedings of the 4rd European Architectural Endoscopy Association Conference / ISBN 3-86005-267-5] Dresden (Germany), 29 September - 1 October 1999, pp. 36-49
summary An important recent development in the simulation techniques was the changes in the mode of presentation: from passive mode to active one. It is now possible to present an image according to the observer’s voluntary movement of body and head by means of a head-mounted display. Such interactive simulation system, which allows people to observe what they like to see, is suitable to study environmental perception, because active attention is essential to manipulate enormous information in the environment. The present paper reports two case studies in which an interactive simulation system was developed to test psychological impact of interior and exterior spaces: the case study 1 intended to clarify the effect of the disposition of transparent and opaque surfaces of a room on the occupants’ „sense of enclosure“, the case study 2 intended to make clear some physical features along a street which are influential for changing atmosphere. In addition to the empirical research, an attempt to develop a new simulation system which uses both analogue and digital images is briefly reported, and a preliminary experiment was conducted to test the performance of the simulation system in which such movable elements as pedestrians and cars generated by real-time CG were overlaid on the video image of a scale model street.
series EAEA
email
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id 396e
authors Pereyra, N., Azubel, R., Torroja, A., López Coronel, J.P. and Muñoz, P.
year 1999
title Do Intelligent Objects Need Programmed Users?
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 52-55
summary Intelligent objects for daily use offer greater advantages than electromechanical products. However, they need a user whose life is more methodical, programmed and predictable. As de number of services offered in such products increase, their restrictions in their flexibility of use arise. Finally, users adapt themselves to habits that these objects suggest (for better) or prescribe (for worse). However, a paradox exists. What is controversial for a standard user: the increasing passivity justified in the eternal pursuit of comfort, for a disabled person means achieving independence and autonomy. In order to accomplish the revolutionary equity that computer science claims, the possibility of being excluded for economic reasons should not exist. If not, it will increase the fracture between coexistent realities in the same territory. For these reasons, assuming the risk of being considered naive and idealist, we believe that in order to build a better future it is necessary to promote policies that guarantee the access to new technologies for people with low economic means. Together with the consciousness users gain -related to product selection-, it would break the premature discouragement that the markets try to impose, resigning us to an unjustified idea of weakness and submission.
series SIGRADI
email
last changed 2016/03/10 09:57

_id 2c63
authors QaQish, Ra'Ed and Tarazi, Khaled
year 1999
title Formulating a Computer-Aided Architectural Design (CAAD) Program Model in Distance Education (DE) at Open Universities (OU)
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 189-204
summary This paper reports on a project that aims to formulate a CAAD program model in Distance Education (Learning/Teaching) framework, to be applied and implemented in future settings at Open Universities worldwide. The methodology used to establish the CAAD program model consisted of a worldwide literature review on the subject of Distance Education and Open Universities. It also involved an assessment of the methods and means used in the delivery of materials to students enrolled at Open Universities, together with an analysis of the current program of study and subject related courses. The methods of this investigation consisted of a comparative analysis between the existing models of teaching process at Open Universities and how it relates to CAAD in architecture schools. The study endeavored to examine several issues that were found to be key factors in any Open University system, namely: the methods of study, program of study, student type/body, academic/degree requirements, and residency/academic calendars. While attempting to establish a conceptual CAAD program model, this study investigated several questions concerning the efficiency of CAAD teaching in Distance Education. One of the study objectives was to determine which factors were mostly needed to effectively integrate CAAD in DE as a new program in Open Universities. In addition, how would these factors affect the design of CAAD courses in OU systems as a new DE program area? And what structural elements would be most affected by these factors? Another objective of this study was to determine to what extent the new CAAD program model in tandem with staff, learning environment, and administered materials would be effective in generating supplementary strategies in the virtual design studio. A third objective was to evaluate the personal computer station as an alternative design studio space in future settings of schools of architecture. Consequently, the principle objective of this study was to develop and establish a CAAD program model to be adopted by Open Universities as a new subject area in DE. Mainly, the study attempted to locate the areas where CAAD teaching excels in the context of virtual design studio of OU system.
series AVOCAAD
last changed 2005/09/09 10:48

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga9908
id ga9908
authors Senagala, Mahesh
year 1999
title Artistic Process, Cybernetics of Self and the Epistemology of Digital Technology
source International Conference on Generative Art
summary From the viewpoint of Batesonian cybernetics, ‘conscious purpose’ and artistic process are distinct ends of a spectrum of the functioning of self. Artistic activities— by which I mean art, poetry, play, design, etc.— involve processes that are beneath the stratum of consciousness. By definition, consciousness is selective awareness and is linear in execution and limited in its capability to synthesize complex parameters. As Heidegger pointed out, technology is a special form of knowledge (episteme). A machine is a manifestation of such a knowledge. A machine is a result of conscious purpose and is normally task-driven to accomplish a specific purpose(s). The questions this paper raises are to do with the connections between conscious purpose, artistic process and digital technology. One of the central questions of the paper is "if artistic process requires an abandonment or relinquishment of conscious purpose at the time of the generation of the work of art, and if the artistic process is a result of vast number of ‘unconscious’ forces and impulses, then could we say that the computer would ever be able to ‘generate’ or ‘create’ a work of art?" In what capacity and what role would the computer be a part of the generative process of art? Would a computer be able to ‘generate’ and ‘know’ a work of art, which, according to Bateson, requires the abandonment of conscious purpose? The ultimate goal of the paper is to unearth and examine the potential of the computers to be a part of the generative process of what Bateson has called "total self as a cybernetic model". On another plane of discourse, Deleuze and Guattari have added a critical dimension to the discourse of cybernetics and models of human mind and the global computer networks. Their notion of ‘rhizome’ has its roots in Batesonian cybernetics and the cybernetic couplings between the ‘complex systems’ such as human mind, biological and computational systems. Deleuze and Guattari call such systems as human brain and the neural networks as rhizomatic. Given the fact that the computer is the first known cybernetic machine to lay claims to artificial intelligence, the aforementioned questions become even more significant. The paper will explore how, cybernetically, the computer could be ‘coupled’ with ‘self’ and the artistic process — the ultimate expression of human condition. These philosophical and artistic explorations will take place through a series of generative artistic projects (See the figure below for an example) that aim at understanding the couplings and ‘ecology’ of digital technology and the cybernetics of self.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c056
authors Tsou, Jin-Yeu and Chow, Benny
year 1999
title Team Orientated Knowledge Construction for Architectural Education
doi https://doi.org/10.52842/conf.ecaade.1999.292
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 292-300
summary Information Technology is always more accessible when we trying to imagine what the IT could be actually used. This situation is even more noticeable in the architecture field, and there are various technologies that have failed on delivering urgent needed education quality. Meanwhile, the tradition architecture education is evolving rapidly under the concepts of problem-based approach, knowledge reconstruction, and self-guided learning. "Education without institutional boundary" happens everyday in the classroom, and multi-direction learning modes have replaced the traditional single-direction teaching approach. The role of IT in the curriculum of architectural design education has become a subject of debate, scrutiny and experimentation in architectural schools. This paper will first outline the theory of applying team-oriented knowledge construction approach into studio teaching, the setup of our integrated digital design media environment is introduced; organization issue regarding the team formation and studio coordination is discussed; case studies are illustrated for demonstrating the methodology applied; and the student feedback is summarized to analysis the effectiveness of the approach.
keywords Multimedia, CD-ROM, Problem-Based Learning, Team-Orientated Learning, Constructivist Learning
series eCAADe
email
last changed 2022/06/07 07:57

_id e719
authors Achten, Henri and Turksma, Arthur
year 1999
title Virtual Reality in Early Design: the Design Studio Experiences
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 327-335
summary The Design Systems group of the Eindhoven University of Technology started a new kind of design studio teaching. With the use of high-end equipment, students use Virtual Reality from the very start of the design process. Virtual Reality technology up to now was primarily used for giving presentations. We use the same technology in the design process itself by means of reducing the time span in which one gets results in Virtual Reality. The method is based on a very brief cycle of modelling in AutoCAD, assigning materials in 3DStudio Viz, and then making a walkthrough in Virtual Reality in a standard landscape. Due to this cycle, which takes about 15 seconds, the student gets immediate feedback on design decisions which facilitates evaluation of the design in three dimensions much faster than usual. Usually the learning curve of this kind of software is quite steep, but with the use of templates the number of required steps to achieve results is reduced significantly. In this way, the potential of Virtual Reality is not only explored in research projects, but also in education. This paper discusses the general set-up of the design studio and shows how, via short workshops, students acquire knowledge of the cycle in a short time. The paper focuses on the added value of using Virtual Reality technology in this manner: improved spatial reasoning, translation from two-dimensional to three-dimensional representations, and VR feedback on design decisions. It discusses the needs for new design representations in this design environment, and shows how fast feedback in Virtual Reality can improve the spatial design at an early stage of the design process.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 37c2
authors Ahmad Rafi, M.E.
year 1999
title Visualisation of Design Using Animation for Virtual Prototyping
doi https://doi.org/10.52842/conf.ecaade.1999.519
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 519-525
summary Although recent technology in time-based representation has vastly improved, animation in virtual prototype design field remains the same. Some designers invest a huge amount of money in the latest visualisation and multimedia technology and yet may create even worse animation. They often cramp sequences resulting in many viewers failing to interpret the design positively as they miss a lot of vital information that explains the design. This paper basically reports the importance of film-making understanding for producing good virtual prototype animation. It will be based on a part of a research project on the use of time-based media in architectural practices. It also includes an empirical analysis of several architectural-based documentary films (including an interview with the film director) and past and present computer animation. This paper then concludes with recommendations of good techniques for making animated visualisation relative to the stage at which the animation is produced for better design decision.
keywords Virtual Prototype, Animation, Time-Based, Film-Making
series eCAADe
email
last changed 2022/06/07 07:54

_id 5cba
authors Anders, Peter
year 1999
title Beyond Y2k: A Look at Acadia's Present and Future
doi https://doi.org/10.52842/conf.acadia.1999.x.o3r
source ACADIA Quarterly, vol. 18, no. 1, p. 10
summary The sky may not be falling, but it sure is getting closer. Where will you when the last three zeros of our millennial odometer click into place? Computer scientists tell us that Y2K will bring the world’s computer infrastructure to its knees. Maybe, maybe not. But it is interesting that Y2K is an issue at all. Speculating on the future is simultaneously a magnifying glass for examining our technologies and a looking glass for what we become through them. "The future" is nothing new. Orwell's vision of totalitarian mass media did come true, if only as Madison Avenue rather than Big Brother. Futureboosters of the '50s were convinced that each garage would house a private airplane by the year 2000. But world citizens of the 60's and 70's feared a nuclear catastrophe that would replace the earth with a smoking crater. Others - perhaps more optimistically -predicted that computers were going to drive all our activities by the year 2000. And, in fact, theymay not be far off... The year 2000 is symbolic marker, a point of reflection and assessment. And - as this date is approaching rapidly - this may be a good time to come to grips with who we are and where we want to be.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_576327 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002